
Polyspace® Products for C/C++

Reference

R2013a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Polyspace® Products for C/C++ Reference

© COPYRIGHT 1999–2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
March 2009 Online Only New for Version 7.0 (Release 2009a)
September 2009 Online Only Revised for Version 7.1 (Release 2009b)
March 2010 Online Only Revised for Version 7.2 (Release 2010a)
September 2010 Online Only Revised for Version 8.0 (Release 2010b)
April 2011 Online Only Revised for Version 8.1 (Release 2011a)
September 2011 Online Only Revised for Version 8.2 (Release 2011b)
March 2012 Online Only Revised for Version 8.3 (Release 2012a)
September 2012 Online Only Revised for Version 8.4 (Release 2012b)
March 2013 Online Only Revised for Version 8.5 (Release 2013a)

Contents

Option Descriptions for C Code

1
Polyspace Analysis Options Overview 1-2

Machine Configuration . 1-3
Machine Configuration Overview . 1-3
Send to Polyspace Server . 1-3
Add to results repository . 1-4
Number of processes for multiple CPU core systems 1-5
Non-official options . 1-6

Target & Compiler . 1-8
Target & Compiler Overview . 1-10
Target operating system . 1-10
Target processor type . 1-11
Generic target options . 1-12
Dialect . 1-18
Allow language extensions . 1-19
Sfr type support . 1-21
Division round down . 1-21
Enum type definition . 1-22
Signed right shift . 1-23
Preprocessor definitions . 1-23
Undefined preprocessor definitions 1-24
Code from DOS or Windows file system 1-24
Continue with compile error . 1-25
Command/script to apply to preprocessed files 1-25
Include . 1-27

Coding Rules & Code Complexity Metrics 1-28
Check MISRA C rules . 1-29
MISRA C rules configuration . 1-29
Check AC AGC rules . 1-30
MISRA AC AGC rules configuration 1-30
Check custom rules . 1-32
Files and folders to ignore . 1-32

v

Effective boolean types . 1-33
Allowed pragmas . 1-34
Calculate code complexity metrics . 1-34

Verification Mode . 1-36
Verify whole application . 1-38
Multitasking . 1-38
Entry points . 1-39
Critical section details . 1-39
Temporally exclusive tasks . 1-40
Verify module . 1-41
Main Generator Behavior for Polyspace Software 1-42
Variables to initialize . 1-43
Initialization functions
(-functions-called-before-main) 1-43

Functions to call . 1-44
Run unit by unit verification . 1-45
Unit by unit common source files . 1-45
Calibration variables . 1-46
Input variables . 1-46
Initialization functions
(-functions-called-before-loop) 1-47

Cyclic functions . 1-47
Termination functions . 1-48
Variable/function range setup . 1-49
Do not consider all global variables to be initialized 1-50
No automatic stubbing . 1-51
Functions to stub . 1-52

Verification Assumptions . 1-53
Respect types in fields . 1-54
Respect types in global variables . 1-55
Ignore float rounding . 1-56
Green absolute address checks . 1-57
Ignore overflowing computations on constants 1-58
Allow negative operand for left shifts 1-59
Detect overflows on . 1-59
Overflows computation mode . 1-61
Enable pointer arithmetic out of bounds of fields 1-61
Allows incomplete or partial allocation of structures 1-65
Permissive function pointer calls . 1-67

Precision . 1-68

vi Contents

Precision level . 1-69
Verification level . 1-70
Verification time limit . 1-71
Retype variables of pointer types . 1-72
Retype symbols of integer types . 1-72
Sensitivity context . 1-74
Improve precision of interprocedural analysis 1-75
Specific Precision . 1-76
Optimize huge static initializers . 1-76
Reduce task complexity . 1-76
Inline . 1-77
Depth of analysis inside structures 1-78

Post Verification . 1-79
Command/script to apply after the end of the code
verification . 1-79

Automatic Orange Tester . 1-80
Number of automatic tests . 1-81
Maximum loop iterations . 1-82
Maximum test time . 1-82

Reporting . 1-84
Generate report . 1-84
Report template name . 1-84
Output format . 1-85

Batch Options . 1-87
-server . 1-88
-sources-list-file . 1-88
-v | -version . 1-89
-h[elp] . 1-89
-prog . 1-89
-date . 1-90
-author . 1-91
-verif-version . 1-91
-results-dir . 1-92
-sources . 1-92
-I . 1-94
-from . 1-94
-import-comments . 1-95
-tmp-dir-in-results-dir . 1-96
-less-range-information . 1-96
-no-pointer-information . 1-97

vii

-keep-all-files . 1-98
-known-NTC . 1-99
-asm-begin -asm-end . 1-99
-strict . 1-100
-permissive . 1-100
-Wall . 1-101
-report-output-name . 1-101

Deprecated Options . 1-103
-continue-with-red-error (Deprecated) 1-103
-continue-with-existing-host (Deprecated) 1-103
-allow-unsupported-linux (Deprecated) 1-104
-quick (Deprecated) . 1-104

Option Descriptions for C++ Code

2
Overview . 2-2

Machine Configuration . 2-3
Machine Configuration Overview . 2-3
Send to Polyspace Server . 2-3
Add to results repository . 2-4
Number of processes for multiple CPU core systems 2-5
Non-official options . 2-6

Target & Compiler . 2-8
Target operating system . 2-10
Target processor type . 2-11
Generic target options . 2-12
Dialect . 2-18
Pack alignment value . 2-20
Import folder . 2-20
Ignore pragma pack directives . 2-20
Support managed extensions . 2-21
Enum type definition . 2-21
Management of scope of ’for loop’ variable index 2-22
Management of w_char_t . 2-23
Set wchar_t to unsigned long . 2-23

viii Contents

Set size_t to unsigned long . 2-24
Preprocessor definitions . 2-24
Undefined preprocessor definitions 2-24
Code from DOS or Windows file system 2-25
Continue with compile error . 2-26
Overcome link error . 2-26
Command/script to apply to preprocessed files 2-26
Include . 2-28

Coding Rules & Code Complexity Metrics 2-29
Check MISRA C++ rules . 2-29
MISRA C++ rules configuration . 2-30
Check JSF C++ rules . 2-31
JSF C++ rules configuration . 2-31
Check custom rules . 2-33
Files and folders to ignore . 2-33
Calculate code complexity metrics . 2-34

Verification Mode . 2-36
Main entry point . 2-38
Entry points . 2-39
Critical section details . 2-39
Temporally exclusive tasks . 2-40
Verify module . 2-41
Class name . 2-42
Methods to call within the specified classes 2-43
Analyze class contents only . 2-44
Skip member initialization check . 2-44
Functions to call . 2-46
Variables to initialize . 2-47
Initialization functions . 2-47
Run unit by unit verification . 2-49
Unit by unit common source files . 2-50
Variable/function range setup . 2-50
No automatic stubbing . 2-51
No STL stubs . 2-52
Functions to stub . 2-52

Verification Assumptions . 2-54
Respect types in fields . 2-55
Respect types in global variables . 2-56
Ignore float rounding . 2-57
Green absolute address checks . 2-58

ix

Ignore overflowing computations on constants 2-59
Allow negative operand for left shifts 2-59
Detect overflows on . 2-60
Overflows computation mode . 2-62

Precision . 2-63
Tuning Precision and Scaling Parameters 2-64
Precision level . 2-65
Verification level . 2-66
Verification time limit . 2-67
Sensitivity context . 2-68
Improve precision of interprocedural analysis 2-68
Inline . 2-69
Depth of analysis inside structures 2-70

Post Verification . 2-71
Command/script to apply after the end of the code 2-71

Reporting . 2-73
Generate report . 2-73
Report template name . 2-73
Output format . 2-74

Batch Options . 2-76
-server . 2-76
-sources . 2-77
-sources-list-file . 2-78
-main-generator-files-to-ignore 2-79
-v | -version . 2-79
-h[elp] . 2-80
-prog . 2-80
-date . 2-81
-author . 2-81
-verif-version . 2-82
-results-dir . 2-82
-I . 2-83
-from . 2-83
-import-comments . 2-84
-tmp-dir-in-results-dir . 2-85
-less-range-information . 2-85
-no-pointer-information . 2-86
-keep-all-files . 2-86

x Contents

-permissive . 2-87
-Wall . 2-88
-report-output-name . 2-88

Deprecated Options . 2-90
-continue-with-existing-host (Deprecated) 2-90
-allow-unsupported-linux (Deprecated) 2-90
-quick (Deprecated) . 2-91

Check Descriptions for C Code

3
UNR – Unreachable Code . 3-3

OBAI – Out of Bounds Array Index 3-5

ZDV – Division by Zero . 3-7

NIV (NIVL) – Non-Initialized Variable 3-8

OVFL – Scalar and Float Overflow 3-9
Scalar Overflow . 3-9
Float Overflow . 3-10
Constant Overflow . 3-12

IRV – Initialized Return Value . 3-14

SHF – Shift Operations . 3-15
Shift Amount in 0..31 (0..63): SHF 3-15
Left Operand of Left Shift is Negative: SHF 3-15

IDP – Illegal Dereferenced Pointer 3-17
Illegal Pointer Access to Variable or Structure Field:
IDP . 3-17

Pointer Within Bounds: IDP . 3-18
Understanding Addressing . 3-19
Understanding Pointers . 3-24

xi

COR – Correctness Condition . 3-33
Array Conversion Must Not Extend Range: COR 3-33
Function Pointer Does Not Point to a Valid Function:
COR . 3-34

NIP – Non-Initialized Pointer . 3-40

ASRT – User Assertion . 3-41

NTC – Non-Termination of Call . 3-43
Non-Termination of Calls and Loops: Informative
Checks . 3-43

Non Termination of a Call: NTC . 3-45
Arithmetic Expressions: NTC . 3-46

K_NTC – Known Non-Termination of Call 3-50

NTL – Non-Termination of Loop . 3-51
Non Termination of Loop: NTL . 3-51
Tooltips for NTL Checks . 3-51
NTL Check Examples . 3-52

STD_LIB – Standard Library Function Call 3-57

ABS_ADDR – Absolute Address . 3-58

IPT – Inspection Points . 3-60

POW (Deprecated) . 3-62

UNFL (Deprecated) . 3-63

UOVFL (Deprecated) . 3-64

xii Contents

Check Descriptions for C++ Code

4
C++ Check Categories . 4-3
Acronyms Associated with Specific C++ Constructions . . . 4-3
Acronym Not Related to C++ Constructions (Also Used for
C Code): . 4-7

UNR – Unreachable Code . 4-10
C++ Example . 4-10
Explanation . 4-11

OBAI – Out of Bounds Array Index 4-12
C++ Example . 4-12
Explanation . 4-13

ZDV – Division by Zero . 4-14
C++ Example . 4-14

NIV (NIVL) – Non-Initialized Variable 4-15
C++ Example . 4-15
Explanation . 4-16

OVFL – Scalar and Float Overflow 4-17
Scalar Overflows . 4-17
Float Overflows . 4-18
Constant Overflow . 4-20

SHF – Shift Operations . 4-22
Shift Amount is Outside its Bounds: SHF 4-22
Left Operand of Left Shift is Negative: SHF 4-23

NNT – Pointer of function Not Null 4-25
C++ Example . 4-25
Explanation . 4-25

CPP – C++ Specific Checks . 4-27
Positive Array Size: CPP . 4-27
Incorrect typeid Argument: CPP . 4-28

xiii

Incorrect dynamic_cast on Pointer: CPP 4-30
Incorrect dynamic_cast on Reference: CPP 4-31

FRV – Function Returns a Value . 4-33
C++ Example . 4-33
Explanation . 4-34

IDP – Illegal Dereferenced Pointer 4-35
Pointer is Outside its Bounds: IDP 4-35
Understanding Addressing . 4-36
Understanding Pointers . 4-40

COR – Correctness Condition . 4-44
Function Pointer Does Not Point to a Valid Function:
COR . 4-44

Scalar Overflow on Division (/) Operation: COR 4-47

NIP – Non-Initialized Pointer . 4-49
C++ Example . 4-49
Explanation . 4-49

EXC – Exception Handling . 4-50
Function throws: EXC . 4-50
Call to Throws: EXC . 4-52
Destructor or Delete Throws: EXC 4-54
Main, Tasks or C Library Function Throws: EXC 4-56
Exception Raised is Not Specified in the Throw List:
EXC . 4-58

Throw During Catch Parameter Construction: EXC 4-60
Continue Execution in __except: EXC 4-62

ASRT – User Assertion . 4-64
C++ Example . 4-64
Explanation . 4-65

OOP – Object Oriented Programming 4-66
Invalid Pointer to Member: OOP . 4-66
Call of Pure Virtual Function: OOP 4-67
Incorrect Type for this-pointer: OOP 4-68

xiv Contents

NTC – Non-Termination of Call . 4-71
Non Termination of Calls and Loops: Informative
Checks . 4-71

Non Termination of Call: NTC . 4-73

NTL – Non Termination of Loop . 4-74
Non Termination of Loop: NTL . 4-74
Tooltips for NTL Checks . 4-76

ABS_ADDR – Absolute Address . 4-77

INF – Potential Call . 4-79
C++ Example . 4-79
Explanation . 4-81

POW (Deprecated) . 4-82

UNFL (Deprecated) . 4-83

UOVFL (Deprecated) . 4-84

Approximations Used During Verification

5
Why Polyspace Verification Uses Approximations 5-2
What is Static Verification . 5-2
Exhaustiveness . 5-3

Approximations Made by Polyspace Verification 5-4
Volatile Variables . 5-4
Structures with Volatile Fields . 5-4
Absolute Addresses . 5-5
Pointer Comparison . 5-5
Shared Variables . 5-5
Trigonometric Functions . 5-6
Unions . 5-7
Constant Pointer . 5-7

xv

Variable Cast as Void Pointer . 5-8

Limitations of Polyspace Verification 5-9

Examples

6
Complete Examples . 6-2
Simple C Example . 6-2
Apache Example . 6-2
cxref Example . 6-3
T31 Example . 6-3
Dishwasher1 Example . 6-3
Satellite Example . 6-4

xvi Contents

1

Option Descriptions for C
Code

• “Polyspace Analysis Options Overview” on page 1-2

• “Machine Configuration” on page 1-3

• “Target & Compiler” on page 1-8

• “Coding Rules & Code Complexity Metrics” on page 1-28

• “Verification Mode” on page 1-36

• “Verification Assumptions” on page 1-53

• “Precision” on page 1-68

• “Post Verification” on page 1-79

• “Reporting” on page 1-84

• “Batch Options” on page 1-87

• “Deprecated Options” on page 1-103

1 Option Descriptions for C Code

Polyspace Analysis Options Overview
In the Project Manager perspective, on the Configuration pane, you can
specify the analysis options that Polyspace® software uses for code verification.

Polyspace software groups the analysis options into various categories. To
display the parameters for a specific category, from the Configuration tree,
select the category.

Note From the command line, you can use the polyspace-c command to
specify parameters. The description for each parameter includes command
line information.

1-2

Machine Configuration

Machine Configuration

In this section...

“Machine Configuration Overview” on page 1-3

“Send to Polyspace Server” on page 1-3

“Add to results repository” on page 1-4

“Number of processes for multiple CPU core systems” on page 1-5

“Non-official options” on page 1-6

Machine Configuration Overview
Use Machine Configuration to specify where the verification is run,
data storage, and host machine features. You can also specify options that
MathWorks® might provide for fine-tuning your verifications.

Send to Polyspace Server
Specify whether verification runs on the server or client system.

1-3

1 Option Descriptions for C Code

Settings
Default: On

On
Run verification on the Polyspace server. The server to use is specified
in the Polyspace preferences.

Off
Run verification on the client system.

Tips

• Specifying this option in the GUI sends the verification to the default
server.

• You specify the default server in the Server Configuration tab of the
Polyspace preferences dialog box (Options > Preferences).

• When specifying the -server option at the command line, you can specify
the name or IP address of a specific server, along with the port number.

• If you do not specify a server, the default server referenced in the
preferences file is used.

• If you do not specify a port number, port 12427 is used by default.

Command-Line Information

Parameter: -server
Value: name or IP address:port number
Example: polyspace-remote-c server 192.168.1.124:12400

Add to results repository
Specify whether verification results are added to the Polyspace Metrics results
database, allowing Web-based reporting of results and code metrics.

1-4

Machine Configuration

Settings
Default: Off

On
Verification results are stored in the Polyspace Metrics results database.
This allows you to use the Polyspace Metrics Web interface to view
verification results and code metrics.

Off
Verification results are not added to the database.

Dependency

• This option is available only for server verifications.

Command-Line Information

Parameter: -add-to-results-repository
Example: polyspace-c -server -add-to-results-repository

Number of processes for multiple CPU core systems
This option specifies the maximum number of processes that can run
simultaneously on a multi-core system. The valid range is 1 to 128.

Note To disable parallel processing, set: -max-processes 1.

Default:

4

Example Shell Script Entry:

polyspace-c -max-processes 1

1-5

1 Option Descriptions for C Code

Non-official options

• “-extra-flags” on page 1-6

• “-c-extra-flags” on page 1-6

• “-cfe-extra-flags” on page 1-7

• “-il-extra-flags” on page 1-7

-extra-flags
This option specifies an expert option to be added to the analyzer. Each word
of the option (even the parameters) must be preceded by -extra-flags.

These flags will be given to you by MathWorks if required.

Default:

No extra flags.

Example Shell Script Entry:

polyspace-c -extra-flags -param1 -extra-flags -param2 \

-extra-flags 10 ...

-c-extra-flags
This option is used to specify an expert option to be added to a verification.
Each word of the option (even the parameters) must be preceded by
-c-extra-flags.

These flags will be given to you by MathWorks if required.

Default:

No extra flags.

Example Shell Script Entry:

1-6

Machine Configuration

polyspace-c -c-extra-flags -param1 -c-extra-flags -param2
-c-extra-flags 10

-cfe-extra-flags
This option is used to specify an expert option for a verification.

These flags will be given to you by MathWorks if required.

Default:

No extra flags.

Example Shell Script Entry:

polyspace-c -cfe-extra-flags -param1 -cfe-extra-flags -param2

-il-extra-flags
This option is used to specify an expert option to be added to a verification.
Each word of the option (even the parameters) must be preceded by
-il-extra-flags.

These flags will be given to you by MathWorks if required.

Default:

No extra flags.

Example Shell Script Entry:

polyspace-c -il-extra-flags -param1 -il-extra-flags -param2
-il-extra-flags 10

1-7

1 Option Descriptions for C Code

Target & Compiler

1-8

Target & Compiler

In this section...

“Target & Compiler Overview” on page 1-10

“Target operating system” on page 1-10

“Target processor type” on page 1-11

“Generic target options” on page 1-12

“Dialect” on page 1-18

“Allow language extensions” on page 1-19

“Sfr type support” on page 1-21

“Division round down” on page 1-21

“Enum type definition” on page 1-22

“Signed right shift” on page 1-23

“Preprocessor definitions” on page 1-23

“Undefined preprocessor definitions” on page 1-24

“Code from DOS or Windows file system” on page 1-24

“Continue with compile error” on page 1-25

1-9

1 Option Descriptions for C Code

In this section...

“Command/script to apply to preprocessed files” on page 1-25

“Include” on page 1-27

Target & Compiler Overview
Use Target & Compiler, Target & Compiler > Macros, and Target &
Compiler > Environment Settings to specify the target environment and
compiler behavior.

Target operating system
This option specifies the operating system target for your application.

Possible values are:

• Linux

• Solaris

• VxWorks

• Visual

• no-predefined-OS

This information allows the corresponding system definitions to be used
during preprocessing — to analyze the included files properly.

You can use the target no-predefined-OS in conjunction with -include or/and
-D to give all of the system preprocessor flags to be used at execution time.
Details of these may be found by executing the compiler for the project in
verbose mode.

Default:

Linux

1-10

Target & Compiler

Note Only the Linux® include files are provided with Polyspace software (see
the include folder in the installation directory). Projects developed for use
with other operating systems may be analyzed by using the corresponding
include files for that OS. For instance, in order to analyze a VxWorks® project,
use the option -I path_to_the_VxWorks_include_folder

Example shell script entry:

polyspace-c -OS-target linux
polyspace-c -OS-target no-predefined-OS -D GCC_MAJOR=2 /

-include /complete_path/inc/gn.h ...

Target processor type
This option specifies the target processor type, and in doing so informs the
verification of the size of fundamental data types and of the endianess of the
target machine.

Possible values are:

• i386 (default)

• sparc

• m68k

• powerpc

• c-167

• tms320c3x

• sharc21x61

• necv850

• hc08

• hc12

• mpc5xx

• c18

• x86_64

1-11

1 Option Descriptions for C Code

• mcpu...(Advanced)

mcpu is a reconfigurable Micro Controller/Processor Unit target. You can use
this type to configure one or more generic targets.

You can analyze code intended for an unlisted processor type using one of the
other processor types, if they share common data properties.

For information on specifying a generic target, or modifying the mcpu target,
see “Generic target options” on page 1-12.

Default:

i386

Example shell script entry:

polyspace-c -target m68k ...

Generic target options
The Generic target options dialog box is only available when you select a
mcpu target.

Allows the specification of a generic "Micro Controller/Processor Unit" or
mcpu target name. Initially, use the dialog box to specify the name of a new
mcpu target — say, “MyTarget”.

That new target is added to the -target options list. The default characteristics
of the new target are as follows (using the type [size, alignment] format)

• char [8, 8, char [16,16]]

• short [8,8], short [16, 16]

• int [16, 16]

• long [32, 32], long long [32, 32]

• float [32, 32], double [32, 32], long double [32, 32]

• pointer [16, 16]

1-12

Target & Compiler

• char is signed

• little-endian

When using the command line, MyTarget is specified with all the options
for modification:

polyspace-c -target MyTarget

For example, a specific target uses 8 bit alignment (see also -align), for which
the command line would read:

polyspace-c -target mcpu -align 8

-little-endian
This option is only available when a -mcpu generic target has been chosen.

The endianness defines the byte order within a word (and the word order
within a long integer). Little-endian architectures are Less Significant byte
First (LSF), for example: i386.

For a little endian target, the less significant byte of a short integer (for
example 0x00FF) is stored at the first byte (0xFF) and the most significant
byte (0x00) at the second byte.

Example shell script entry:

polyspace-c -target mcpu -little-endian

-big-endian
This option is only available when a -mcpu generic target has been chosen.

The endianness defines the byte order within a word (and the word order
within a long integer). Big-endian architectures are Most Significant byte
First (MSF), for example: SPARC, m68k.

For a big endian target, the most significant byte of a short integer (for
example 0x00FF) is stored at the first byte (0x00) and the less significant
byte (0xFF) at the second byte.

1-13

1 Option Descriptions for C Code

Example shell script entry:

polyspace-c -target mcpu -big-endian

-default-sign-of-char [signed|unsigned]
This option is available for all targets. It allows a char to be defined as
"signed", "unsigned", or left to assume the mcpu target’s default behavior

• default mode – The sign of char is left to assume the target’s default
behavior. By default all targets are considered as signed except for hc08
and powerpc targets.

• signed – Disregards the target’s default char definition, and specifies that
a "signed char" should be used.

• unsigned – Disregards the target’s default char definition, and specifies
that a "unsigned char" should be used.

Example Shell Script Entry

polyspace-c -default-sign-of-char unsigned -target mcpu ...

-char-is-16bits
This option is only available when a -mcpu generic target has been chosen.

The default configuration of a generic target defines a char as 8 bits. This
option changes it to 16 bits, regardless of sign.

the minimum alignment of objects is also set to 16 bits and so, incompatible
with the options -short-is-8bits and -align 8.

Setting the char type to 16 bits has consequences on the following:

• computation of size of for objects

• detection of underflow and overflow on chars

Without the option char for mcpu are 8 bits

Example shell script entry:

1-14

Target & Compiler

polyspace-c -target mcpu -char-is-16bits

-short-is-8bits
This option is only available when a mcpu generic target has been chosen.

The default configuration of a generic target defines a short as 16 bits. This
option changes it to 8 bits, regardless of sign.

It sets a short type as 8-bit without specific alignment. That has consequences
for the following:

• computation of size of objects referencing short type

• detection of short underflow/overflow

Example shell script entry

polyspace-c -target mcpu -short-is-8bits

-int-is-32bits
This option is available with a mcpu generic target, hc08, hc12 and mpc5xx
target has been chosen.

The default configuration of a generic target defines an int as 16 bits. This
option changes it to 32 bits, regardless of sign. Its alignment, when an int
is used as struct member or array component, is also set to 32 bits. See also
-align option.

Example shell script entry

polyspace-c -target mcpu -int-is-32bits

-long-long-is-64bits
This option is only available when a mcpu generic target has been chosen.

The default configuration of a generic target defines a long long as 32 bits.
This option changes it to 64 bits, regardless of sign. When a long long is used

1-15

1 Option Descriptions for C Code

as struct member or array component, its alignment is also set to 64 bits.
See also -align option.

Example shell script entry

polyspace-c -target mcpu -long-long-is-64bits

-double-is-64bits
The default configuration of a generic target defines a double as 32 bits. This
option, changes both double and long double to 64 bits. When a double or
long double is used as a struct member or array component, its alignment
is set to 4 bytes.

See also -align option.

Defining the double type as a 64 bit double precision float impacts the
following:

• Computation of sizeofobjects referencing double type

• Detection of floating point underflow/overflow

This option is available for the following targets:

• mcpu generic target

• sharc21x61

• hc08

• hc12

• mpc5xx

Example

int main(void)
{
struct S {char x; double f;};
double x;
unsigned s1, s2;
s1 = sizeof (double);

1-16

Target & Compiler

s2 = sizeof(struct S);
x = 3.402823466E+38; /* IEEE 32 bits float point maximum value */
x = x * 2;
return 0;

}

Using the default configuration of sharc21x62, Polyspace verification
assumes that a value of 1 is assigned to s1, 2 is assigned to s2, and there
is a consequential float overflow in the multiplication x * 2. Using the
–double-is-64bits option, a value of 2 is assigned to s1, and no overflow
occurs in the multiplication (because the result is in the range of the 64-bit
floating point type)

Example shell script entry

polyspace-c -target mcpu -double-is-64bits

-pointer-is-32bits
This option is only available when a mcpu generic target has been chosen.

The default configuration of a generic target defines a pointer as 16 bits. This
option changes it to 32 bits. When a pointer is used as struct member or array
component, its alignment is also set also to 32 bits (see -align option).

Example shell script entry

polyspace-c -target mcpu -pointer-is-32bits

-align [8|16|32]
This option is available with a mcpu generic target and some other specific
targets (with hc08, hc12 or mpc5xx available values are 16 and 32). It is used
to set the largest alignment of all data objects to 4/2/1 byte(s), meaning a
32, 16 or 8 bit boundary respectively.

-align 32 (Default). The default alignment of a generic target is 32 bits.
This means that when objects with a size of more than 4 bytes are used as
struct members or array components, they are aligned at 4 byte boundaries.

1-17

1 Option Descriptions for C Code

Example shell script entry with a 32 bits default alignment
polyspace-c -target mcpu

-align 16. If the -align 16 option is used, when objects with a size of
more than 2 bytes are used as struct members or array components, they
are aligned at 2 bytes boundaries.

Example shell script entry with a 16 bits specific alignment:

polyspace-c -target mcpu -align 16

-align 8. If the -align 8 option is used, when objects with a size of more
than 1 byte are used as struct members or array components, are aligned
at 1 byte boundaries. Consequently the storage assigned to the arrays and
structures is strictly determined by the size of the individual data objects
without member and end padding.

Example shell script entry with a 8 bits specific alignment:

polyspace-c -target mcpu -align 8

Dialect
Specify whether verification allows syntax associated with the IAR and Keil
dialects.

Settings
Default: none

none
Verification does not allow non-ANSI® C dialects.

keil
Verification allows non-ANSI C syntax and semantics associated with
the Keil dialect.

iar
Verification allows non-ANSI C syntax and semantics associated with
the IAR dialect.

1-18

Target & Compiler

Tips

• IAR refers to the compilers from IAR Systems (www.iar.com).

• Keil refers to the Keil™ products from ARM (www.keil.com).

• Using this option allows verification to tolerate additional structure types
as keywords of the language, such as sfr, sbit, and bit. These structures
and associated semantics are part of the compiler that has integrated it
with the ANSI C language as an extension.

Example of source code with Keil dialect:

unsigned char bdata Status[4];
sfr AU = 0xF0;
sbit OCmd = Status[0]^2;
s^2 = 1; s^6 = 0;

Example with IAR dialect:

unsigned char bdata Status[4];
sfr OCmd @ 0x4FFE;
OCmd.2 = 1; s.6 = 0;

Command-Line Information

Parameter: -dialect
Type: string
Value: none | keil | iar
Default: none
Example: polyspace-c dialect keil

See Also
“Verify Keil or IAR Dialects”.

Allow language extensions
This option allows the verification to accept a subset of common C language
constructs and extended keywords, as defined by the C99 standard or
supported by many compilers.

1-19

http://www.iar.com/
http://www.keil.com/

1 Option Descriptions for C Code

When you select this option, the following constructs are supported:

• Designated initializers (labeling initialized elements)

• Compound literals (structs or arrays as values)

• Boolean type (_Bool)

• Statement expressions (statements and declarations inside expressions)

• typeof constructs

• Case ranges

• Empty structures

• Cast to union

• Local labels (__label__)

• Hexadecimal floating-point constants

• Extended keywords, operators, and identifiers (_Pragma, __func__,
__const__, __asm__)

In addition, when you use this option, the software ignores the following
extended keywords:

• near

• far

• restrict

• _attribute_(X)

• rom

Note This option is set automatically when you select the -permissive
option.

You cannot use this option with the -strict option.

Default:

1-20

Target & Compiler

Selected

Example Shell Script Entry:

polyspace-c -allow-language-extensions

Sfr type support
Associated to the option -dialect, if the code uses specific sfr type keyword,
it ismandatory to declare using sfr-types option. It gives the name of the
sfr type and its size in bits. The syntax is:

-sfr-types <sfr_name>=<size_in_bits>,

where <sfr_name> could be any name, but most of the time we encounter sfr,
sfr16 and sfr32 . <size in bits> could be one of the values 8, 16 and 32.

Default:

No dialect used.

Example Shell Script Entry:

polyspace-c dialect iar sfr-types sfr=8,sfr32=32,sfrb=16

Division round down
This option concerns the division and modulus of a negative number.

The ANSI standard stipulates that "if either operand of / or % is negative,
whether the result of the / operator, is the largest integer less or equal than the
algebraic quotient or the smallest integer greater or equal than the quotient, is
implementation defined, same for the sign of the % operator".

Note a = (a / b) * b + a % b is always true.

Default:

1-21

1 Option Descriptions for C Code

Without the option (default mode), if either operand of / or % is negative,
the result of the / operator is the smallest integer greater or equal than the
algebraic quotient. The result of the % operator is deduced from a % b = a
- (a / b) * b

Example:

assert(-5/3 == -1 && -5%3 == -2); is true .

With the -div-round-down option:

If either operand / or % is negative, the result of the / operator is the largest
integer less or equal than the algebraic quotient. The result of the % operator
is deduced from a % b = a - (a / b) * b .

Example:

assert(-5/3 == -2 && -5%3 == 1); is true .

Example Shell Script Entry:

polyspace-c -div-round-down ...

Enum type definition
Allows the verification to use different base types to represent an enumerated
type, depending on the enumerator values and the selected definition.

When using this option, each enum type is represented by the smallest
integral type that can hold all its enumeration values.

Possible values are:

• defined-by-standard – Uses the integer type (signed int).

• auto-signed-first - Uses the first type that can hold all of the enumerator
values from the following list: signed char, unsigned char, signed

1-22

Target & Compiler

short, unsigned short, signed int, unsigned int, signed long,
unsigned long, signed long long, unsigned long long.

• auto-unsigned-first - Uses the first type that can hold all of the
enumerator values from the following lists:

- If enumerator values are all positive: unsigned char, unsigned short,
unsigned int, unsigned long, unsigned long long.

- If one or more enumerator values are negative: signed char, signed
short, signed int, signed long, signed long long.

Signed right shift
Choose between arithmetical and logical computation.

• - Arithmetic: the sign bit remains:

(-4) >> 1 = -2
(-7) >> 1 = -4

7 >> 1 = 3

• - Logical: 0 replaces the sign bit

(-4) >> 1 = (-4U) >> 1 = 2147483646
(-7) >> 1 = (-7U) >> 1 = 2147483644
7 >> 1 = 3

Example shell script entry

When using the command line, arithmetic is the default computation mode.
When this option is set, logical computation will be performed.

polyspace-c -logical-signed-right-shift

Preprocessor definitions
Define macro compiler flags to be used during compilation phase.

You can specify only one flag with each -D option. However, you can specify
the option multiple times.

Default:

1-23

1 Option Descriptions for C Code

Some defines are applied by default, depending on your -OS-target option.

Example Shell Script Entry:

polyspace-c -D HAVE_MYLIB -D USE_COM1 ...

Undefined preprocessor definitions
Undefine macro compiler flags.

You can specify only one flag with each -U option. However, you can specify
the option multiple times.

Default:

Some undefines may be set by default, depending on your -OS-target option.

Example Shell Script Entry:

polyspace-c -U HAVE_MYLIB -U USE_COM1 ...

Code from DOS or Windows file system
Use this option when the contents of the include or source folder comes from
a DOS or Windows® file system. It deals with upper/lower case sensitivity
and control character issues.

The affected files are:

• Header files in all include folders specified through the -I option.

• All source files selected for the verification through the -sources option.

For example, with this option,

#include "..\mY_TEst.h"^M

#include "..\mY_other_FILE.H"^M

resolves to:

1-24

Target & Compiler

#include "../my_test.h"

#include "../my_other_file.h"

Default:

Enabled

Example Shell Script Entry:

polyspace-c -I /usr/include -dos -I ./my_copied_include_dir
-D test=1

Continue with compile error
Specifies that verification continues even if some source files do not compile.
Functions that are used but not specified are stubbed automatically.

If a source file contains global variables, you may also need to select the option
-allow-undef-variables to enable verification.

Example Shell Script Entry :

polyspace-c -continue-with-compile-error ...

Command/script to apply to preprocessed files
When this option is used, the specified script file or command is run just
after the preprocessing phase on each source file. The script executes on
each preprocessed c file. The command should be designed to process the
standard output from preprocessing and produce its results in accordance
with that standard output.

Note The Compilation Assistant is automatically disabled when you specify
this option.

1-25

1 Option Descriptions for C Code

You can find each preprocessed file in the results directory in the zipped
file ci.zip located in <results/ALL/SRC/MACROS. The extension of the
preprocessed file is .ci.

It is important to preserve the number of lines in the preprocessed .ci file.
Adding a line or removing one could result in some unpredictable behavior on
the location of checks and MACROS in the Polyspace viewer.

Default:

No command.

Example Shell Script Entry – file name:

To replace the keyword “Volatile” by “Import”, you can type the following
command on a Linux workstation:

polyspace-c -post-preprocessing-command `pwd`/replace_keywords

where replace_keywords is the following script:

#!/usr/bin/perl
my $TOOLS_VERSION = "V1_4_1";
binmode STDOUT;

Process every line from STDIN until EOF
while ($line = <STDIN>)
{

Change Volatile to Import
$line =~ s/Volatile/Import/;
print $line;

}

1-26

Target & Compiler

Note If you are running Polyspace software version 5.1 (r2008a) or later on
a Windows system, you cannot use Cygwin™ shell scripts. Since Cygwin is
no longer included with Polyspace software, all files must be executable by
Windows. To support scripting, the Polyspace installation now includes Perl:

Polyspace_Install\sys\perl\win32\bin\perl.exe

To run the Perl script provided in the previous example on a Windows
workstation, you must use the option -post-preprocessing-command with
the absolute path to the Perl script, for example:

Polyspace_Install\polyspace\bin\polyspace-c.exe
-post-preprocessing-command
Polyspace_Install\sys\perl\win32\bin\perl.exe
<absolute_path>\replace_keywords

Include
This option is used to specify files to be included by each C file involved in
the verification.

Default:

No file is universally included by default, but directives such as "#include
<include_file.h>" are acted upon.

Example Shell Script Entry:

polyspace-c -include `pwd`/sources/a_file.h -include
/inc/inc_file.h ...

polyspace-c -include /the_complete_path/my_defines.h ...

1-27

1 Option Descriptions for C Code

Coding Rules & Code Complexity Metrics

In this section...

“Check MISRA C rules” on page 1-29

“MISRA C rules configuration” on page 1-29

“Check AC AGC rules” on page 1-30

“MISRA AC AGC rules configuration” on page 1-30

“Check custom rules” on page 1-32

“Files and folders to ignore” on page 1-32

“Effective boolean types” on page 1-33

1-28

Coding Rules & Code Complexity Metrics

In this section...

“Allowed pragmas” on page 1-34

“Calculate code complexity metrics” on page 1-34

Check MISRA C rules
This option allows you to check the code against a set of MISRA-C:2004 rules.
All MISRA® checks are included in the log file of the verification.

Note This option requires a Polyspace Client™ for C/C++ license.

MISRA C rules configuration
Specifies set of coding rules to check.

Available options are:

• required-rules— Check required MISRA C® coding rules. All violations
are reported as warnings.

• all-rules— Check all (required and advisory) MISRA C coding rules. All
violations are reported as warnings.

• SQO-subset1— Check a subset of MISRA C rules that have a direct impact
on the selectivity of verification. All violations are reported as warnings.
For more information, see “SQO Subset 1 – Direct Impact on Selectivity”.

• SQO-subset2 — Check a second subset of MISRA C rules that have an
indirect impact on the selectivity of verification, as well as the rules
contained in SQO-subset1. All violations are reported as warnings. For
more information, see “SQO Subset 2 – Indirect Impact on Selectivity”.

• custom— Check a specified set of coding rules. You must provide the name
of an ASCII file containing a list of MISRA rules to check.

Format of the custom file:

<rule number> off|error|warning

1-29

1 Option Descriptions for C Code

Use the character # at the start of a comment. For example:

MISRA configuration file for my_project

10.5 off # disable misra rule number 10.5

17.2 error # violation misra rule 17.2 is an error

17.3 warning # violation of misra rule 17.3 is a warning

Default:

all-rules

Example Shell Script Entry:

polyspace-c -misra2 all-rules ...

polyspace-c -misra2 SQO-subset1 ...

polyspace-c -misra2 -custom myrules.txt ...

Check AC AGC rules
This option allows you to check the code against rules specified by MISRA
AC AGC Guidelines for the Application of MISRA-C:2004 in the Context
of Automatic Code Generation. All MISRA AC AGC checks are included in
the log file of the verification.

Note This option requires a Polyspace Client for C/C++ license.

MISRA AC AGC rules configuration
Specifies set of coding rules to check.

Available options are:

• OBL-rules — Check coding rules that belong to the OBL (obligatory)
category specified by MISRA AC AGC Guidelines for the Application of
MISRA-C:2004 in the Context of Automatic Code Generation

1-30

Coding Rules & Code Complexity Metrics

• OBL-REC-rules — Check coding rules that belong to the the OBL
(obligatory) and REC (recommended) categories specified by MISRA AC
AGC Guidelines for the Application of MISRA-C:2004 in the Context of
Automatic Code Generation

• all-rules— Check all MISRA C coding rules. All violations are reported
as warnings.

• SQO-subset1— Check a subset of MISRA C rules that have a direct impact
on the selectivity of verification. All violations are reported as warnings.
For more information, see “SQO Subset 1 – Direct Impact on Selectivity”

• SQO-subset2 — Check a second subset of MISRA C rules that have an
indirect impact on the selectivity of verification, as well as the rules
contained in SQO-subset1. All violations are reported as warnings. For
more information, see “SQO Subset 2 – Indirect Impact on Selectivity”.

• custom— Check a specified set of coding rules. You must provide the name
of an ASCII file containing a list of MISRA rules to check.

Format of the custom file:

<rule number> off|error|warning

Use the character # at the start of a comment. For example:

MISRA configuration file for my_project

10.5 off # disable misra rule number 10.5

17.2 error # violation misra rule 17.2 is an error

17.3 warning # violation of misra rule 17.3 is a warning

Default:

Disabled

Example Shell Script Entry

polyspace-c -misra-ac-agc all-rules ...

polyspace-c -misra-ac-agc OBL-rules ...

polyspace-c -misra-ac-agc SQO-subset1 ...

1-31

1 Option Descriptions for C Code

polyspace-c -misra-ac-agc -custom myrules.txt ...

Check custom rules
Check names or text patterns in source code with reference to custom rules in
specified text file. Each rule defines a check of a specified pattern against a
source code identifier. For more information, see “Create a Custom Coding
Rules File”.

Default:

Disabled

Example Shell Script Entry

polyspace-c -custom-rules myrules.txt

Files and folders to ignore
Specify files or folders that the coding rules checker should ignore. For
example, you can specify this option if you use headers that do not conform to
the MISRA C standard. You can specify the following values with this option:

• all-headers (default) — Exclude folders specified by the -I option that
contain only header files, that is, folders with no source files.

• all— Exclude all include folders specified by the -I option. For example,
if you are checking a large code base with standard or Visual headers,
excluding all include folders can significantly improve the speed of code
analysis.

• custom — Exclude files and folders that you specify.

The software displays a warning if:

• A specified file or folder does not exist.

• All source code is ignored.

You can specify this option only if you specify the -misra2, -misra-ac-agc, or
-custom-rules option.

1-32

Coding Rules & Code Complexity Metrics

Example shell script entry :

polyspace-c -misra2 misra.txt includes-to-ignore all

polyspace-c -misra2 misra.txt includes-to-ignore
"c:\usr\include"

Effective boolean types
Use this option with the -misra2 option to specify data types that you want
Polyspace to treat as Boolean. The use of this option may affect the checking
of MISRA-C rules 12.6, 13.2, and 15.4.

The command line syntax for this option is

-boolean-types type1,type2, ...

where type1,type2, ... are names of the data types that you want
Polyspace to treat as Boolean.

Polyspace applies this treatment to the named data types in all source files.
For example, if two different data types share a name that is passed to the
option, then Polyspace considers both data types to be Boolean.

This option supports only integer data types (char, signed and unsigned
integer types, and enumerated types). For example, the data type boolean_t
defined as follows:

typedef signed char boolean_t;

Default:

No data types specified as Boolean.

Example Shell Script Entry:

polyspace-c -misra2 all-rules -boolean-types
bool_type1,bool_type2,bool_type3

1-33

1 Option Descriptions for C Code

Allowed pragmas
Use this option with the -misra2 option to specify undocumented pragma
directives for which MISRA C rule 3.4 should not be applied. MISRA C rule
3.4 requires checking that all pragma directives are documented within the
documentation of the compiler.

The command line syntax for this option is

-allowed-pragmas pragma1,pragma2,pragma3 ...

where pragma1,pragma2, ... are undocumented pragma directives.

Default:

No undocumented pragma directives specified

Example Shell Script Entry:

polyspace-c -misra2 AC-AGC-OBL-subset -allowed-pragmas
pragma01,pragma02,pragma03

Calculate code complexity metrics
Specify whether to calculate software quality metrics, such as cyclomatic
number, during verification.

Note This option requires a Polyspace Client for C/C++license.

Settings
Default: On

On
Calculate software quality metrics, including project metrics, file
metrics, and function metrics.

Off
Do not calculate software quality metrics.

1-34

Coding Rules & Code Complexity Metrics

Tips

• You can view software quality metrics data in the Polyspace Metrics Web
interface, or by running a Software Quality Objectives report from the
Polyspace verification environment.

• Project metrics include number of recursions, number of include headers,
and number of files.

• File metrics include comment density, and number of lines.

• Function metrics include cyclomatic number, number of static paths,
number of calls, and Language scope.

Command-Line Information

Parameter: -code-metrics
Example: polyspace-c -code-metrics

1-35

1 Option Descriptions for C Code

Verification Mode

1-36

Verification Mode

1-37

1 Option Descriptions for C Code

In this section...

“Verify whole application” on page 1-38

“Multitasking” on page 1-38

“Entry points” on page 1-39

“Critical section details” on page 1-39

“Temporally exclusive tasks” on page 1-40

“Verify module” on page 1-41

“Main Generator Behavior for Polyspace Software” on page 1-42

“Variables to initialize” on page 1-43

“Initialization functions (-functions-called-before-main)” on page 1-43

“Functions to call” on page 1-44

“Run unit by unit verification” on page 1-45

“Unit by unit common source files” on page 1-45

“Calibration variables” on page 1-46

“Input variables” on page 1-46

“Initialization functions (-functions-called-before-loop)” on page 1-47

“Cyclic functions” on page 1-47

“Termination functions” on page 1-48

“Variable/function range setup” on page 1-49

“Do not consider all global variables to be initialized” on page 1-50

“No automatic stubbing” on page 1-51

“Functions to stub” on page 1-52

Verify whole application
Use the function main from the given set of files to verify the whole application

Multitasking
Verify multitasking code

1-38

Verification Mode

Entry points
This option is used to specify the tasks/entry points to be analyzed by the
verification, using a Comma-separated list with no spaces.

These entry points must not take parameters. If the task entry points are
functions with parameters they should be encapsulated in functions with no
parameters, with parameters passed through global variables instead.

Using Polyspace verification, c tasks must have the prototype "void
task_name(void);".

Example Shell Script Entry:

polyspace-c -entry-points proc1,proc2,proc3 ...

Critical section details
-critical-section-begin "proc1:cs1[,proc2:cs2]"

and

-critical-section-end "proc3:cs1[,proc4:cs2]"

These options specify the procedures beginning and ending critical sections,
respectively. Each uses a list enclosed within double speech marks, with
list entries separated by commas, and no spaces. Entries in the lists take
the form of the procedure name followed by the name of the critical section,
with a colon separating them.

These critical sections can be used to model protection of shared resources,
or to model interruption enabling and disabling.

Note This option cannot be used with the main-generator option.

Default:

no critical sections.

1-39

1 Option Descriptions for C Code

Example Shell Script Entry:

polyspace-c -critical-section-begin "start_my_semaphore:cs" \

-critical-section-end "end_my_semaphore:cs"

Temporally exclusive tasks
This option specifies the name of a file. That file lists the sets of tasks which
never execute at the same time (temporal exclusion).

The format of this file is :

• one line for each group of temporally excluded tasks,

• on each line, tasks are separated by spaces.

Note This option cannot be used with the main-generator option.

Default:

No temporal exclusions.

Example Task Specification file

File named ’exclusions’ (say) in the ’sources’ directory and containing:

task1_group1 task2_group1

task1_group2 task2_group2 task3_group2

Example Shell Script Entry :

polyspace-c -temporal-exclusions-file sources/exclusions \

-entry-points task1_group1,task2_group1,task1_group2,\

task2_group2,task3_group2 ...

1-40

Verification Mode

Verify module
This option activates the Polyspace main generator.

When you select this option, the main generator automatically generates a
main unless a main already exists in your verification.

The generated main has the following behavior.

1 It initializes any variables identified by the option -variables
written-before-loop.

2 It calls any functions specified by the option
-functions-called-before-loop. This could be considered an
initialization function.

3 It initializes any variables identified by the option -variables
written-in-loop.

4 It calls any functions specified by the option -functions-called-in-loop.

5 It calls any functions specified by the option
-functions-called-after-loop. This could be a terminate function for
a cyclic program.

The following sections describe each of these options in detail.

Note The main generator is always active for client verifications.

Main for Generated Code

The following example shows how to use the main generator options to
generate a main for a cyclic program, such as code generated from a Simulink®

model.

init parameters \\ -variables-written-before-loop
init_fct() \\ -functions-called-before-loop
while(1){ \\ start main loop
init inputs \\ -variables-written-in-loop

1-41

1 Option Descriptions for C Code

step_fct() \\ -functions-called-in-loop
}
terminate_fct() \\ -functions-called-after-loop

Main Generator Behavior for Polyspace Software
This same options can be used for both Polyspace Client for C/C++ and
Polyspace Server™ for C/C++ verifications, but the default behavior differs
between the two:

• Server Verification – You have the choice whether to activate the main
generator.

• Client Verification – The main generator is always activated.

Polyspace Client for C/C++ Main Generator
For client verifications, you do not need to determine whether the code
contains a "main" or not. Polyspace Client for C/C++ product automatically
checks your code for a main.

• If a main exists in the set of files, the verification uses that main.

• If a main does not exist, the tool generates a main using the options you
specify.

Polyspace Server for C/C++ Main Generator
If you do not select the -main-generator option, a Polyspace Server for C/C++
verification stops if it does not detect a main. This behavior can help isolate
files missing from the verification.

When you select the -main-generator option, the Polyspace Server for C/C++
product checks your code for a main.

• If a main exists in the set of files, the verification uses that main.

• If a main does not exist, the tool generates a main using the options you
specify.

1-42

Verification Mode

Variables to initialize
Specifies how generated main initializes global variables. Use with
-main-generator.

Settings available:

• none — No global variable will be written by the main.

• public— Every variable except static and const variables are assigned
a random value, representing the full range of possible values.

• all — Every variable is assigned a random value, representing the full
range of possible values.

• custom— Only variables present in the list are assigned a random value,
representing the full range of possible values.

Command-Line Information
Parameter: -main-generator-writes-variables

Example

polyspace-c main-generator -main-generator-writes-variables all

polyspace-c -main-generator -main-generator-writes-variables
custom=variable_a,variable_b

Initialization functions
(-functions-called-before-main)
This option is used with -main-generator-calls to specify a function, or list
of functions, that are called before all selected functions in main.

Eligible functions:

Every function defined in the source code is considered eligible.

If the function is not defined in the source code, the verification continues
with a warning message.

1-43

1 Option Descriptions for C Code

Example:

polyspace-c -main-generator-calls unused
-functions-called-before-main MyFunction1,MyFunction2

Functions to call
Use this option with the -main-generator option to specify the functions
to be called.

Set this option to unused (default) when you run a unit-by-unit verification.

Eligible functions:

Every function declared and defined in the source code is considered eligible.

The list of functions is a list of short names (names without signature)
separated by comas. If the name of a function from the list is associated with
a function that is not defined in the source code, the Polyspace verification
stops and displays an error message. If the name of a function from the list
is ambiguous, all the functions with the same short name are called. If a
function from the list is not eligible, Polyspace verification stops and displays
an error message. This error message is also in the log file.

Values:

• none – No function is called. This can be used with a multitasking
application without a main, for instance.

• unused (default) – Call all functions not already called within the code.
Inline functions will not be called by the generated main.

• all – all functions except inline will be called by the generated main.

• custom – Only functions present in the list are called from the main. Inline
functions can be specified in the list and will be called by the generated
main.

An inline (static or extern) function is not called by the generated main
program with values all or unused. An inline function can only be called
with custom value:

1-44

Verification Mode

-main-generator-calls custom=my_inlined_func

Example:

polyspace-c -main-generator -main-generator-calls
custom=function_1,function_2

Run unit by unit verification
This option creates a separate verification job for each source file in the
project.

Each file is compiled, sent to the Polyspace Server, and verified individually.
Verification results can be viewed for the entire project, or for individual units.

Note Unit by unit verification is available only for server verifications. It is
not compatible with multitasking options such as -entry-points.

Default:

Not selected

Example Shell Script Entry:

polyspace-c -unit-by-unit

Unit by unit common source files
Specifies a list of files to include with each unit verification. These files are
compiled once, and then linked to each unit before verification. Functions
not included in this list are stubbed.

Default:

None

Example Shell Script Entry:

1-45

1 Option Descriptions for C Code

polyspace-c -unit-by-unit-common-source
c:/polyspace/function.c

Calibration variables
Specify how the generated main initializes variables (parameters) of cyclic
system. Initialization occurs before cyclic loop.

Settings available:

• none (default) — No variable will be written by the main.

• public— Every variable except static and const variables are assigned a
“random” value, representing the full range of possible values

• all — Every variable except const variables are assigned a “random”
value, representing the full range of possible values

• custom— Only variables present in the list are assigned a “random” value,
representing the full range of possible values

Example
polyspace-c -main-generator -variables-written-before-loop none
polyspace-c -main-generator -variables-written-before-loop
custom=variable_a,variable_b

Input variables
Specifies how the generated main initializes variables that are inputs to a
cyclic system. The generated main resets variables at each iteration of the
cyclic loop.

Settings available:

• none (default) — No variable will be written by the main.

• public— Every variable except static and const variables are assigned a
“random” value, representing the full range of possible values

• all — Every variable except const variables are assigned a “random”
value, representing the full range of possible values

1-46

Verification Mode

• custom— Only variables present in the list are assigned a “random” value,
representing the full range of possible values

Example
polyspace-c -main-generator -variables-written-in-loop none
polyspace-c -main-generator -variables-written-in-loop
custom=variable_a,variable_b

Initialization functions
(-functions-called-before-loop)
Specify an initialization function, or list of functions that are called by the
generated main before the cyclic loop.

The generated main does the following:

1 Initialize variables

2 Call initialization functions that you specify MyInitFunction1,
MyInitFunction2

3 Execute cyclic loop with calls to functions that you specify using the option
-functions-called-in-loop.

4 Call termination functions that you specify using the option
-functions-called-after-loop.

Example shell script entry:

polyspace-c -main-generator -function-called-before-loop
MyInitFunction,MyInitFunction2

Cyclic functions
Specify the functions to be called within the cyclic loop of the generated main.

Possible values:

• none — No function called. Use this when verifying a multitasking
application without a main.

1-47

1 Option Descriptions for C Code

• unused (default) — Every function is called by the generated main unless
the function is called elsewhere by the code being verified.

• all— Except for inline functions, all functions are called by the generated
main.

• custom— Only functions in your specified list are called by the generated
main. You can specify inline functions in your list.

An inline (static or extern) function is not called by the generated main
program if you specify all or unused.

Note If you specify the unused option, the generated main might call
functions that are also called by a function pointer, that is, these functions
might be called twice.

Example:

polyspace-c -main-generator -functions-called-in-loop public

polyspace-c -main-generator -functions-called-in-loop
custom=function_1,function_2

Termination functions
Specify a function or list of functions that are called by the generated main
after the cyclic loop.

The generated main does the following:

1 Initialize variables

2 Call initialization functions that you specify using the option
-functions-called-before-loop

3 Execute cyclic loop with calls to functions that you specify using the option
-functions-called-in-loop

1-48

Verification Mode

4 Call the termination functions that you specify MyTermFunction1,
MyTermFunction2

Example shell script entry:

polyspace-c -main-generator -function-called-after-loop
MyTermFunction1,MyTermFunction2

Variable/function range setup
This option permits the setting of specific data ranges for a list of given
global variables.

For more information, see “Specify Data Ranges for Variables and Functions
(Contextual Verification)”.

File format:

The file filename contains a list of global variables with the below format:

variable_name val_min val_max <init|permanent|globalassert>

Variables scope:

Variables do not have to be defined variables.

Note Only one mode can be applied to a global variable.

No checks are added with this option except for globalassert mode.

Some warning can be displayed in log file concerning variables when format
or type is not in the scope.

Default:

Disable.

Example shell script entry:

1-49

1 Option Descriptions for C Code

polyspace-c -data-range-specifications range.txt ...

Do not consider all global variables to be initialized
This option specifies that Polyspace verification should not take into account
default initialization defined by ANSI C. When this option is not used, default
initialization are

• 0 for integers

• 0 for characters

• 0.0 for floats

With the option in use, all global variable will be treated as non initialized,
and therefore cause a red NIV error if they are read before being written to.

NIV Example 1:

1 int var; // line 1: -no-def-init-glob does not follow ANSI C
2 // initialization behavior on global variables
3 int main(void)
4 {
5 int res;
6 res = var; // line 6: red NIV using -no-def-init-glob
7 return res;
8 }

To change the red NIV to green using the -no-def-init-glob option, change
line 1 to:

int var = 0;

NIV Example 2 — With Tasks:

// -entry-points t1, t2,
// -no-def-init-glob

1 int var; // line 1
2 void main(void) { var = 1;} // line 2
3 void t1(void)

1-50

Verification Mode

4 {
5 int res;
6 while(1) {
7 res = var; // line 7: green NIV using -no-def-init-glob
8 // because var has been initialized before read
9 }
10 }
11 static var2; // line 11
12 void t2(void)
13 {
14 int res;
15 while(1) {
16 res = var2; // line 16: red NIV using -no-def-init-glob because
17 // var2 is not initialized before first read
18 }
19 }

At line 7, the variable has a green NIV because the variable has been written
before first read in task t1(). At line 16, the verification reports a red NIV
because a global variable has not been explicitly written before first read.

To workaround the red NIV at line 16, change line 11 to:

static var2 = 0;

Example Shell Script Entry :

polyspace-c -no-def-init-glob ...

No automatic stubbing
By default, Polyspace verification automatically stubs all functions. When
this option is used, the list of functions to be stubbed is displayed and the
verification is stopped.

Benefits:

This option may be used where

1-51

1 Option Descriptions for C Code

• The entire code is to be provided, which may be the case when verifying
a large piece of code. When the verification stops, it means the code is
not complete.

• Manual stubbing is preferred to improve the selectivity and speed of the
verification.

Note This option cannot be used with the permissive-stubber option.

Default:

All functions are stubbed automatically

Functions to stub
Specifies functions that you want the software to stub.

Enter a comma-separated list of functions. For example,
function_1,function_2.

Spaces are not allowed for C functions.

Example Shell Script Entry:

polyspace-c -functions-to-stub function_1,function_2 ...

1-52

Verification Assumptions

Verification Assumptions

In this section...

“Respect types in fields” on page 1-54

“Respect types in global variables” on page 1-55

“Ignore float rounding” on page 1-56

“Green absolute address checks” on page 1-57

“Ignore overflowing computations on constants” on page 1-58

“Allow negative operand for left shifts” on page 1-59

“Detect overflows on” on page 1-59

“Overflows computation mode” on page 1-61

“Enable pointer arithmetic out of bounds of fields” on page 1-61

1-53

1 Option Descriptions for C Code

In this section...

“Allows incomplete or partial allocation of structures” on page 1-65

“Permissive function pointer calls” on page 1-67

Respect types in fields
This is a scaling option, designed to help process complex code. When it is
applied, Polyspace verification assumes that structure fields not declared as
containing pointers are never used for holding pointer values. This option
should only be used with Type-safe code, when it does not cause a loss of
precision. See also -respect-types-in-globals.

In the following example, we will lose precision using option
–respect-types-in-fields option:

struct {
unsigned x;
int f1;
int *z[2];

} S1;

void funct2(void) {
int *tmp;
int y;
((int**)&S1)[0] = &y; /* S1.x points on y */
tmp = (int*)S1.x;
y=0;
tmp = 1; / write 1 into y */
assert(y==0);

}

Polyspace verification will not take care that S1.x contains the address of y
resulting a green assert.

Default:

Polyspace verification assumes that structure fields may contain pointer
values.

1-54

Verification Assumptions

Example Shell Script Entry:

polyspace-c -respect-types-in-fields ...

Respect types in global variables
This is a scaling option, designed to help process complex code. When it is
applied, Polyspace verification assumes that global variables not declared as
containing pointers are never used for holding pointer values. This option
should only be used with Type-safe code, when it does not cause a loss of
precision. See also -respect-types-in-fields.

In the following example, we will lose precision using option
–respect-types-in-globals option:

int x;
void t1(void) {
int y;
int *tmp = &x;
*tmp = (int)&y;
y=0;
(int)x = 1; // x contains address of y
assert (y == 0); // green with the option

}

Polyspace verification will not take care that x contains the address of y
resulting a green assert.

Default:

Polyspace verification assumes that global variables may contain pointer
values.

Example Shell Script Entry:

polyspace-c -respect-types-in-globals ...

1-55

1 Option Descriptions for C Code

Ignore float rounding
Without this option, Polyspace verification rounds floats according to the
IEEE® 754 standard: simple precision on 32-bits targets and double precision
on target which define double as 64-bits.

With the option, exact computation is performed.

Example:

void ifr(float f)
{
double a,b;
a = 0.2;
b = 0.2;

if (a + b == 0.4) {
// reached whether -ignore-float-rounding is used or not
assert (1);
f = 1.0F*f;
}

else {
assert (1);
f = 1.0F * f;
// reached only when -ignore-float-rounding is not used

}
}

Using this option can lead to different results compared to the "real life"
(compiler and target dependent): Some paths will be reachable or not for
Polyspace verification while they are not (or are) depending of the compiler
and target. So it can potentially give approximate results (green should be
unproven). This option has an impact on OVFL checks on floats.

However, this option allows reducing the number of unproven checks because
of the “delta” approximation.

For example:

• FLT_MAX (with option set) = 3.40282347e+38F

1-56

Verification Assumptions

• FLT_MAX (following IEEE 754 standard) = 3.40282347e+38F ± Δ

void ifr(float f)
{
double a,b;
a = 0.2;
b = 0.2;

if (a + b == 0.4) {
assert (1);
f = 1.0F*f; // Overflow never occurs because f <= FLT_MAX.

// reached when -ignore-float-rounding is used
}
else {
assert (1);
f = 1.0F * f; // OVFL could occur when f = (FLT_MAX + D)

// reached when -ignore-float-rounding is not used
}

}

Default:

IEEE 754 rounding under 32 bits and 64 bits.

Example Shell Script Entry:

polyspace-c -ignore-float-rounding ...

Green absolute address checks
If you know that the absolute addresses in your code are valid, you can
specify this option to make all ABS_ADDR checks green. Otherwise, the
software generates an orange ABS_ADDR check when an absolute address is
assigned to a pointer. This is because the software has no information about
the absolute address and therefore cannot verify, for example, the address,
availability of memory, and initialization of memory.

The software permits memory access to the absolute address after generating
the orange ABS_ADDR check for the first assignment operation. IDP and

1-57

1 Option Descriptions for C Code

NIV checks for memory access operations after the first assignment operation
are green.

Default:

Orange ABS_ADDR check generated when an absolute address is assigned
to a pointer.

Example Shell Script Entry:

polyspace-c -green-absolute-address-checks ...

Ignore overflowing computations on constants
This option specifies that the verification should be permissive with regards
to overflowing computations on constants. Note that it deviates from the
ANSI C standard.

For example,

char x = 0xff;

causes an overflow according to the standard, but if it is analyzed using this
option it becomes effectively the same as

char x = -1;

With this second example, a red overflow will result regardless of the use
of the option.

char x = (rnd?0xFF:0xFE);

Default:

char x = 0xff; causes an overflow

Example Shell Script Entry:

polyspace-c -ignore-constant-overflows ...

1-58

Verification Assumptions

Allow negative operand for left shifts
This option permits a shift operation on a negative number.

According to the ANSI C standard, such a shift operation on a negative
number is illegal. For example:

-2 << 2

With this option in use, Polyspace verification considers the operation to be
valid. In the above example, the result would be

-2 << 2 = -8

Note According to the ANSI-C standard, if the value of the right operand
is negative, or is greater than or equal to the width in bits of the promoted
left operand, the behavior is undefined. Therefore, the verification flags it as
illegal shift operation.

Default:

A shift operation on a negative number causes a red error.

Example Shell Script Entry:

polyspace-c -allow-negative-operand-in-shift ...

Detect overflows on
Specifies how verification handles overflowing computations on integers.

Possible settings are:

• none – The verification does not check for integer computation overflows.
If a computation value exceeds the range of the result type, the result is
wrapped, and no OVFL check is reported.

For example, MAX_INT + 1 wraps to MIN_INT.

1-59

1 Option Descriptions for C Code

• signed (default) – Verification checks all signed integer computations
and signed integer to signed integer conversions. The option
-scalar-overflows-behavior specifies whether results for signed integers
are restricted to an acceptable value or wrapped.

For unsigned integer operations, the results are wrapped, and no OVFL
check is reported.

This behavior conforms to the ANSI C (ISO C++) standard.

• signed-and-unsigned – Verification checks all integer computations and
integer conversions, including conversions that cause a change of signs.

The option -scalar-overflows-behavior specifies whether operation
results are restricted to an acceptable value or wrapped.

This behavior is more strict than the ANSI C (ISO C++) standard requires.

Consider the examples below.

Example 1

When you use the signed-and-unsigned option, the following example
generates an error:

unsigned char x;

x = 255;

x = x+1; //overflow due to this option

Using the none option, however, the example does not generate an error.

unsigned char x;
x = 255;
x = x+1; // turns x into 0 (wrap around)

Example 2

When you use the signed-and-unsigned option, the following example does
not generate an error:

unsigned char Y=1;

Y = ~Y; //no overflow and GREEN OVFL check

1-60

Verification Assumptions

As the ~ operator applies directly to an unsigned char variable, there is
no risk of an overflow. The outcome of the operation is a wrapped-around
unsigned char variable. In this example, the Polyspace verification continues
with the value 254 assigned to the unsigned char variable Y.

Example Shell Script Entry:

polyspace-c -scalar-overflows-checks signed ...

Overflows computation mode
Specifies how verification computes the results of overflowing integer
computations or integer conversions.

Possible settings are:

• truncate-on-error (default) — Result of an overflowing operation is
restricted to an acceptable value. If the check is red, verification stops
(in the current code). If the check is orange, verification continues with
restricted value.

• wrap-around— Result of an overflowing operation wraps around the type
range. The check has no impact on values for the rest of the verification.

For example, MAX_INT + 1 wraps to MIN_INT.

Example Shell Script Entry:

polyspace-c -scalar-overflows-behavior wrap-around ...

Enable pointer arithmetic out of bounds of fields
Allow navigation within a structure or union, supporting pointer movement
from one field to another. Automatically specifies the -size-in-bytes option.

Default: Off

On
A variable might be part of a larger object, for example, a structure. In
this case, the bounds of a pointer to the variable are determined by the

1-61

1 Option Descriptions for C Code

size of the object that contains the variable. If the pointer goes out of
bounds, the software generates a red IDP check.

Off
The bounds of a pointer are determined by the size of the variable that
the pointer points to, even if the variable is part of a larger object.

Pointer Arithmetic Within Structures

In the following example, if you do not specify the option, the software
generates a red IDP check.

void main(void) {
struct S {char a; char b; int c;} x;
char *ptr = &x.b;
ptr ++;
*ptr = 1; // Red on the dereference, because b is the object pointed to
}

If you specify the option, the IDP check is green. The verification considers
the pointer with reference to the host object x, which is &x. The offset to the
field b within the structure of type S (inter-fields and end-padding included) is
correct.

Consider a second example.

int main()
{

struct S {
char a;
/* 3 bytes of padding between 'a', 'b' */
int b;
int c;
char d[3];
unsigned char e:7;
char f;
/* 3 bytes of end padding */

} x;

struct Nesting_S {

1-62

Verification Assumptions

struct S s;
int c;
char buf[8];
int d;

} z;

struct S *ptr0;
char *ptr;

ptr = &z.s.f;
ptr += 4;
*(int *)ptr = 10;

ptr0 = &z.s;
ptr = &ptr0->f;
ptr += 4;

*(int *) ptr = 10; /* Access to z.c, Green IDP */

ptr = &z.buf[0];
ptr += 8;
*(int *)ptr = 10; /* Access to z.d, Green IDP */

return (0);
}

If you specify the option, the verification generates green checks. If you do
not specify the option, the verification generates a red IDP check with no
further green checks.

...
*(int *)ptr = 10; /* Red IDP */

ptr0 = &z.s;
ptr = &ptr0->f;
ptr += 4;

*(int *) ptr = 10;

ptr = &z.buf[0];

1-63

1 Option Descriptions for C Code

ptr += 8;
*(int *)ptr = 10;

return (0);
}

Negative Pointer Offset

Polyspace does not allow the use of pointers with negative offset values, even
if the pointers might point to allocated memory locations. Specifying the
options -allow-pointer-arith-on-struct and -size-in-bytes does not
change this behavior.

Consider the following example.

typedef struct
{

int a;
int b;
int c;

} s_little_t;

typedef struct
{

s_little_t s1; // Offset 0, size 12
s_little_t s2; // Offset 12, size 12
int x; // Offset 24, size 4

} s_big_t;

void test(void)
{

void *addr_lx;
addr_lx = (void *) malloc (12U);
assert(addr_lx != 0);

{
s_little_t *ly = (s_little_t *)addr_lx;
ly->a = 1;
ly->b = 2;

1-64

Verification Assumptions

ly->c = 3;

{
char *bz = ((char *)ly) - 12U; // Negative offset
s_big_t *bs = (s_big_t *)bz;
assert(

((*bs).s2.c) == 3); //Red IDP
}

}
}

Even though bs points to allocated memory, the negative offset of –12 bytes
generates a red IDP check.

Example Shell Script Entry:

polyspace-c -allow-ptr-arith-on-struct ...

Allows incomplete or partial allocation of structures
Allow incomplete or partial allocation of memory for structures, where
memory allocation is made through malloc or cast statements.

This option is automatically specified if you specify
-allow-ptr-arith-on-struct.

Default: Off

On
Partial allocation of memory for structures permitted.

Off
Complete allocation of memory for structures is required.

Memory Allocation for Structures

Consider the following the example.

#include <stdlib.h>

1-65

1 Option Descriptions for C Code

typedef struct _little { int a; int b; } LITTLE;
typedef struct _big { int a; int b; int c; } BIG;

void main(void) {
BIG *p = malloc(sizeof(LITTLE));

if (p!= ((void *) 0)) {
p->a = 0 ;
p->b = 0 ;
p->c = 0 ;

}
}

If you do not specify the option, the software generates the following checks:

BIG *p = malloc(sizeof(LITTLE));

if (p!= ((void *) 0)) {
p->a = 0 ; // Red IDP check
p->b = 0 ;
p->c = 0 ;

}

The pointer p points to a BIG structure that requires 12 bytes. However, only
8 bytes are allocated through the malloc statement. Therefore, the software
generates a red IDP check.

If you specify the option, the software generates the following checks:

BIG *p = malloc(sizeof(LITTLE));

if (p!= ((void *) 0)) {
p->a = 0 ;
p->b = 0 ;
p->c = 0 ; // Red IDP check

}

As 8 bytes are allocated, the software generates green IDP checks for the
pointers to the variables a and b. However, the variable c requires 4 bytes and
no memory is allocated. Therefore, the software generates a red IDP check.

1-66

Verification Assumptions

Example Shell Script Entry:

polyspace-c -size-in-bytes ...

Permissive function pointer calls
By default, Polyspace allows a function pointer to call a function only if both
the function pointer and function types are identical. For example, a function
with type

int f(int*)

cannot be called by a function pointer of type

int fptr(void*)

If this option is set, Polyspace allows such calls.

Caution With applications that use function pointers extensively, this
option can cause a significant loss in performance and a higher number of
orange checks as Polyspace has to consider more execution paths.

Example Shell Script Entry:

polyspace-c -permissive-function-pointer ...

1-67

1 Option Descriptions for C Code

Precision

In this section...

“Precision level” on page 1-69

“Verification level” on page 1-70

“Verification time limit” on page 1-71

“Retype variables of pointer types” on page 1-72

1-68

Precision

In this section...

“Retype symbols of integer types” on page 1-72

“Sensitivity context” on page 1-74

“Improve precision of interprocedural analysis” on page 1-75

“Specific Precision” on page 1-76

“Optimize huge static initializers” on page 1-76

“Reduce task complexity” on page 1-76

“Inline” on page 1-77

“Depth of analysis inside structures” on page 1-78

Precision level
This option specifies the precision level to be used. It provides higher
selectivity in exchange for more verification time, therefore making results
review more efficient and hence making bugs in the code easier to isolate. It
does so by specifying the algorithms used to model the program state space
during verification.

Begin with the lowest precision level. Red errors and gray code can then be
addressed before rerunning the Polyspace verification with higher precision
levels.

Benefits:

• A higher precision level contributes to a higher selectivity rate, making
results review more efficient and hence making bugs in the code easier to
isolate.

• A higher precision level also means higher verification time

- -O0 corresponds to static interval verification.

- -O1 corresponds to complex polyhedron model of domain values.

- -O2 corresponds to more complex algorithms to closely model domain
values (a mixed approach with integer lattices and complex polyhedrons).

1-69

1 Option Descriptions for C Code

- -O3 is only suitable for code smaller than 1000 lines of code. For such
codes, the resulting selectivity might reach high values such as 98%,
resulting in a very long verification time, such as an hour per 1000 lines
of code.

Default:

-O2

Example Shell Script Entry:

polyspace-c -O1 -to pass4 ...

Verification level
This option specifies the phase after which the verification will stop.

Benefits:

This option provides improved selectivity, making results review more
efficient and making bugs in the code easier to isolate.

• A higher integration level contributes to a higher selectivity rate, leading
to "finding more bugs" with the code.

• A higher integration level also means higher verification time

Note Begin by running -to pass0 (Software Safety Analysis level
0) You can then address red errors and gray code before rerunning the
verification with higher integration levels.

Possible values:

• c-compile or "C Source Compliance Checking"

• c-to-il or C to Intermediate Language — Not available from the
Polyspace verification environment.

• pass0 or "Software Safety Analysis level 0"

1-70

Precision

• pass1 or "Software Safety Analysis level 1"

• pass2 or "Software Safety Analysis level 2"

• pass3 or "Software Safety Analysis level 3"

• pass4 or "Software Safety Analysis level 4" — Default

• other

Note If you use -to other then Polyspace verification will continue until you
stop it manually (via kill-rte-kernel) or stops until it has reached pass20.

Default:

pass4

Example Shell Script Entry:

polyspace-c -to "Software Safety Analysis level 3"...

polyspace-c -to pass0 ...

Verification time limit
Specifies a time limit for the verification (in hours).

If the verification does not complete within the specified time, the verification
fails.

You can specify fractions of an hour in decimal form. For example:

• -timeout 5.75 – Five hours, 45 minutes.

• -timeout 3,5 – Three hours, 30 minutes.

Example Shell Script Entry :

polyspace-c -timeout 5.75 ...

1-71

1 Option Descriptions for C Code

Retype variables of pointer types
Retype variables of pointer types to improve precision of pointer conversions
chain

The software replaces the original type by the aliased object type when a
symbol of pointer type aliases to a single type of objects.

For example, the assert statement in the following code can be proved using
-retype-pointer option:

struct A {int a; char b;} s = {1,2};

char *tmp = (char *)&s;

struct A *pa = (struct A*)tmp;

assert((pa->a == 1) && (pa->b == 2));

This principle can be applied to fields of struct/unions of a pointer type.
However, this option sets the -size-in-bytes option.

See also -retype-int-pointer.

Default:

Disable by default

Example Shell ScriptEntry:

polyspace-c -retype-pointer ...

Retype symbols of integer types
Retype variables of pointer to signed or unsigned integer types in order to
improve precision of pointer conversions chain.

The software replaces the original type by the aliased object type when a
symbol of pointer type aliases to a single type of objects. It applies only on
symbols of signed or unsigned integer types.

For example, the following assert statement can be proved using this option:

void function(void)

1-72

Precision

{

struct S1 {

int x;

int y;

int z;

char t;

} s1 = {1,2,3,4};

struct S2 {

int first;

void *p;

} s2;

int addr;

addr = (int)(&s1);

assert(((struct S1 *)addr)->y == 2); // ASRT is verified

s2.first = (int)(&s1);

assert(((struct S1 *)s2.first)->y == 2); // ASRT is verified

}

However, this option sets -size-in-bytes and has no effect on:

• Global symbols of integer types if -respect-types-in-globals is set

• Fields of structure or unions of integer types if -respect-types-in-fields
is set

Some sides effects can be noticed on Polyspace checks concerning initialization
on variables which can be stated as initialization on pointer check (NIP).

This option sets the -retype-pointer option internally, so -retype-pointer
and -retype-int-pointer are exclusive in the Polyspace verification
environment.

This option should be used on:

• Code with memory mapping – When constant big structures (global
variable) are declared with a pointer and points to const structure, setting
the option will consider that the pointer and the pointer structure are
synonyms (aliased) and precision of the result will increase. Option to
set: -retype-pointer.

1-73

1 Option Descriptions for C Code

• Code close to the communication layer API (code with lots of cast in
(void *)) – When code contains low level drivers, generic pointer (void *) can
be used. It is recommended to use this with an -inline of the functions
containing these casts. Options to set: -retype-pointer -inline.

• Code in which MISRA rule 11.2 is violated – When integers contains
pointers, precision can be improved when setting an option. Option to set:
-retype-int-pointer.

These options are not set by default because they all change the option
-size-in-bytes. Therefore, precision can decrease and some red IDP checks
may be affected. In addition, using these options will consider "x" (previously
int) as a pointer. This results in checks changing category (NIV to NIP).

Default:

Disable by default

Example Shell ScriptEntry:

polyspace-c -retype-int-pointer...

Sensitivity context
Add call context information for checks contained in given functions. For
example, if one call of the function results in a red check, and another call
results in a green check, the call information and color for both calls is kept
in the function check.

• none — No context sensitivity.

• auto — Automatically select functions for which context sensitivity is
applied. The software selects functions that are:

- Leaves of the call tree (called functions but not calling functions).

- Small. The software uses an internal threshold to determine whether
a function is small.

- Called more than once.

• custom— Apply context sensitivity to functions that you specify.

1-74

Precision

Example Shell Script Entry:

polyspace-c -context-sensitivity -auto ...

Improve precision of interprocedural analysis
This option is used to improve interprocedural verification precision within
a particular pass (see -to pass1, pass2, pass3 or pass4). The propagation of
information within procedures is done earlier than usual when this option is
specified. That results in improved selectivity and a longer verification time.

Consider two verifications, one with this option set to 1 (with), and one
without this option (without)

• a level 1 verification in (with) (pass1) will provide results equivalent to
level 1 or 2 in the (without) verification

• a level 1 verification in (with) can last x times more than a cumulated level
1+2 verification from (without). "x" might be exponential.

• the same applies to level 2 in (with) equivalent to level 3 or 4 in (without),
with potentially exponential verification time for (a)

Gains using the option

• (+) highest selectivity obtained in level 2. no need to wait until level 4

• (-) This parameter increases exponentially the verification time and might
be even bigger than a cumulated verification in level 1+2+3+4

• (-) This option can only be used with less than 1000 lines of code

Default:

0

Example Shell Script Entry:

polyspace-c -path-sensitivity-delta 1 ...

1-75

1 Option Descriptions for C Code

Specific Precision
This option is used to specify the list of .c files to be analyzed with a different
precision from that specified generally -O(0-3) for this verification.

In batch mode, each specified module is followed by a colon and the desired
precision level for it. Any number of modules can be specified in this way, to
form a comma-separated list with no spaces.

Default:

All modules are treated with the same precision.

Example Shell Script Entry:

polyspace-c -O1 \
-modules-precision myMath:O2,myText:O1, ...

Optimize huge static initializers
When variables are defined with huge static initialization, scaling problems
may occur during the compilation phase. This option approximates the
initialization of array types of integer, floating point, and char types (included
string) if required.

It can speed up the verification, but may decrease precision for some
applications

Default:

Option not set.

Example Shell Script Entry:

polyspace-c -no-fold ...

Reduce task complexity
This scaling option can be used to reduce task complexity (see also
-entry-points).

1-76

Precision

It uses a slightly less precise model of pointer/thread interaction compared
to that used by default, and is likely to prove helpful when there are a lot
of pointers in an application. See “Reduce Verification Time” for more
explanation of when to use it.

It causes a loss of precision:

• more orange checks

• loss of precision when shared variables are reads via pointers.

Default:

disabled by default.

Example Shell Script Entry :

polyspace-c -lightweight-thread-model ...
polyspace-c -lwtm ...

Inline
A scaling option that creates a clone of a each specified procedure for each
call to it.

Cloned procedures follow a naming convention viz:

procedure1_pst_cloned_nb,

where nb is a unique number giving the total number of cloned procedures.

Such an inlining allows the number of aliases in a given procedure to be
reduced, and may also improve precision.

Restrictions :

• Extensive use of this option may duplicate too much code and may lead to
other scaling problems. Carefully choose procedures to inline.

• This option should be used in response to the inlining hints provided by
the alias verification

1-77

1 Option Descriptions for C Code

• This option should not be used on main, task entry points and critical
section entry points

Depth of analysis inside structures
This is a scaling option to limits the depth of verification into nested
structures during pointer verification.

This option is only available for C and C++.

Default:

There is no fixed limit.

Example Shell Script Entry:

polyspace-c -k-limiting 1 ...

In this example above, verification will be precise to only one level of nesting.

1-78

Post Verification

Post Verification

In this section...

“Command/script to apply after the end of the code verification” on page 1-79

“Automatic Orange Tester” on page 1-80

“Number of automatic tests” on page 1-81

“Maximum loop iterations” on page 1-82

“Maximum test time” on page 1-82

Command/script to apply after the end of the code
verification
When this option is used, the specified script file or command is executed
once the verification has completed.

The script or command is executed in the results directory of the verification.

Execution occurs after the last part of the verification. The last part of is
determined by the –to option.

1-79

1 Option Descriptions for C Code

Note Depending of the architecture used (notably when using remote
launcher), the script can be executed on the client side or the server side.

Default:

No command.

Example Shell Script Entry – file name:

This example shows how to send an email to tip the client side off that his
verification has been ended. So the command looks like:

polyspace-c -post-analysis-command `pwd`/end_email

where end_email is your Perl script.

Note If you are running Polyspace software version 5.1 (r2008a) or later on
a Windows system, you cannot use Cygwin shell scripts. Since Cygwin is
no longer included with Polyspace software, all files must be executable by
Windows. To support scripting, the Polyspace installation now includes Perl:

Polyspace_Install\sys\perl\win32\bin\perl.exe

To run the Perl script provided in the previous example on a Windows
workstation, you must use this option with the absolute path to the Perl
script, for example:

Polyspace_Install\polyspace\bin\polyspace-c.exe
-post-analysis-command
Polyspace_Install\sys\perl\win32\bin\perl.exe
<absolute_path>\end_email

Automatic Orange Tester
Activates the Automatic Orange Tester at the end of static verification. By
running dynamic stress tests on unproven code, the Automatic Orange

1-80

Post Verification

Test can identify orange checks that are potential run-time errors. See
“Automatically Test Orange Code”.

Note The software still supports the option -prepare-automatic-tests.
However, support for this option will cease in a future release.

With -automatic-orange-tester, the software does not support the
following:

• -div-round-down

• -char-is-16bits

• -short-is-8bits

• Global asserts in the code of the form Pst_Global_Assert(A,B)

In addition, there are restrictions on other options. You must not specify the
following with -automatic-orange-tester:

• -target [c18 | tms320c3c | x86_64 | sharc21x61]

• -data-range-specification (in global assert mode)

You must use the -target mcpu option together with -pointer-is-32bits.

Default :

Disabled

Example Shell Script Entry :

polyspace-c -automatic-orange-tester ...

Number of automatic tests
Specify total number of test cases that you want to the Automatic Orange
Tester to run. Running more tests increases the chances of finding a run-time
error, but takes more time to complete.

1-81

1 Option Descriptions for C Code

Option is available only if you select Automatic Orange Tester
(-automatic-orange-tester). The maximum value that the software
supports is 100,000.

Default:

500

Example Shell Script Entry:

polyspace-c -automatic-orange-tester
-automatic-orange-tester-tests-number 550 ...

Maximum loop iterations
Specify maximum number of iterations for a loop after which the Automatic
Orange Tester considers the loop to be an infinite loop. A larger number of
iterations decreases the chances of incorrectly identifying an infinite loop, but
takes more time to complete.

Option is available only if you select Automatic Orange Tester
(-automatic-orange-tester). The maximum value that the software
supports is 1000.

Default:

1000

Example Shell Script Entry:

polyspace-c -automatic-orange-tester
-automatic-orange-tester-loop-max-iteration 800 ...

Maximum test time
Maximum time (in seconds) allowed for a test before Automatic Orange Tester
moves on to next test. Increasing test time reduces number of tests that time
out, but increases total verification time.

1-82

Post Verification

Option is available only if you select Automatic Orange Tester
(-automatic-orange-tester). The maximum value that the software
supports is 60.

Default:

5 seconds

Example Shell Script Entry:

polyspace-c -automatic-orange-tester
-automatic-orange-tester-timeout 10 ...

1-83

1 Option Descriptions for C Code

Reporting

In this section...

“Generate report” on page 1-84

“Report template name” on page 1-84

“Output format” on page 1-85

Generate report
Specify whether to create verification report using report generation options

Settings
Default: Off

On
Create report.

Off
No report created.

Report template name
Specify template for generating verification report

1-84

Reporting

Settings
Default:

Polyspace_Install\polyspace\toolbox\psrptgen\templates\Developer.rpt.
Polyspace_Install is the installation folder for your Polyspace product.

Report templates provided with the software include:

• CodingRules.rpt

• Developer.rpt

• Developer_WithGreenChecks.rpt

• DeveloperReview.rpt

• Quality.rpt

• SoftwareQualityObjective.rpt

Tip
Report generated at the end of the verification process, before execution of
any -post-analysis-command.

Command-Line Information

Parameter: report-template
Type: string
Value: any valid script file name
Example: polyspace-c -report-template filepath\my_template

Output format
Specify output format of report

Settings
Default: RTF

RTF
Generate an .rtf format report.

1-85

1 Option Descriptions for C Code

HTML
Generate an .html format report.

PDF
Generate a .pdf format report.

Word
Generate a .doc format report.

Word is not available on UNIX® platforms. RTF is used instead.

XML
Generate and .xml format report.

Note WORD format is not available on UNIX platforms, RTF format is used
instead.

Note You must have Microsoft® Office installed to view .RTF format reports
containing graphics, such as the Quality report.

Command-Line Information

Parameter: report-output-format
Type: string
Value: RTF | HTML | PDF | Word | XML
Default: RTF

Shell script example:

polyspace-c -report-template my_template report-output-format pdf

1-86

Batch Options

Batch Options

In this section...

“-server” on page 1-88

“-sources-list-file” on page 1-88

“-v | -version” on page 1-89

“-h[elp]” on page 1-89

“-prog” on page 1-89

“-date” on page 1-90

“-author” on page 1-91

“-verif-version” on page 1-91

“-results-dir” on page 1-92

“-sources” on page 1-92

“-I” on page 1-94

“-from” on page 1-94

“-import-comments” on page 1-95

“-tmp-dir-in-results-dir” on page 1-96

“-less-range-information” on page 1-96

“-no-pointer-information” on page 1-97

“-keep-all-files” on page 1-98

“-known-NTC” on page 1-99

“-asm-begin -asm-end” on page 1-99

“-strict” on page 1-100

“-permissive” on page 1-100

“-Wall” on page 1-101

“-report-output-name” on page 1-101

1-87

1 Option Descriptions for C Code

-server
Using polyspace-remote-[c] [server [name or IP address][:<port
number>]] allows you to send a verification to a specific or referenced
Polyspace server.

Note If the option server is not specified, the default server referenced in
the Polyspace-Launcher.prf configuration file will be used as the server.

When a server option is associated to the batch launching command, the
name or IP address and a port number need to be specified. If the port number
does not exist, the 12427 value will be used by default.

Note also that polyspace-remote- accepts all other options.

Option Example Shell Script Entry:

polyspace-remote-c server 192.168.1.124:12400

polyspace-remote-c

polyspace-remote-c server Bergeron

-sources-list-file
This option is only available in batch mode. The syntax of file_name is the
following:

• One file per line.

• Each file name includes its absolute or relative path.

The source files are compiled in the order in which they are specified.

Note If you do not specify any files, the software verifies all files in the
source directory in alphabetical order.

1-88

Batch Options

Example Shell Script Entry for -sources-list-file:

polyspace-c -sources-list-file "C:\Analysis\files.txt"

polyspace-c -sources-list-file "files.txt"

-v | -version
Display the Polyspace version number.

Example Shell Script Entry:

polyspace-c v

It will show a result similar to:

Polyspace r2007a+

Copyright (c) 1999-2008 The Mathworks, Inc.

-h[elp]
Display in the shell window a simple help in a textual format giving
information on all options.

Example Shell Script Entry:

polyspace-c h

-prog
Specify a name for the project.

Note The Session identifier option no longer appears in the General section
of the Analysis options GUI. You specify the Project name, Version, and
Author parameters in the Polyspace Project – Properties dialog box. For more
information, see “Create Verification Project”.

1-89

1 Option Descriptions for C Code

Settings
Default: New_Project

• The Session identifier cannot contain spaces.

• Use only characters that are valid for UNIX file names.

Command-Line Information

Parameter: -prog
Value: any valid value
Example: polyspace-c -prog myApp ...

-date
Specify a date stamp for the verification.

Note The Date option no longer appears in the General section of the
Analysis options GUI. The date is set automatically when you launch a
verification.

Settings
Default: Date the verification is launched

By default, the date stamp uses the dd/mm/yyyy format.

Tip
You can specify an alternative date format by selecting Edit > Preferences
> Miscellaneous in the Launcher.

Command-Line Information

Parameter: -date
Value: any valid value
Example: polyspace-c -date "02/01/2002"...

1-90

Batch Options

-author
Specify the name of the person performing the verification.

Note The Author option no longer appears in the General section of the
Analysis options GUI. You specify the Project name, Version, and Author
parameters in the Polyspace Project – Properties dialog box. For more
information, see “Create Verification Project” .

Settings
Default: username of the current user.

Note The default username is obtained with the whoami command.

Command-Line Information

Parameter: -author
Value: any valid value
Example: polyspace-c -author "John Tester"

-verif-version
Specify a version identifier for the verification.

Note The Project Version option no longer appears in the General section
of the Analysis options GUI. You specify the Project name, Version, and
Author parameters in the Polyspace Project – Properties dialog box. For more
information, see “Create Verification Project”.

Settings
Default: 1.0

1-91

1 Option Descriptions for C Code

Tip
This option can be used to identify different verifications.

Command-Line Information

Parameter: -verif-version
Value: any valid value
Example: polyspace-c -verif-version 1.3

-results-dir
This option specifies the folder in which Polyspace software will write
the results of the verification. Note that although relative folders may be
specified, particular care should be taken with their use especially where
the tool is to be launched remotely over a network, and/or where a project
configuration file is to be copied using the "Save as" option.

Default:
Shell Script: The folder in which tool is launched.
From Graphical User Interface: C:\Polyspace_Results

Example Shell Script Entry:

polyspace-c -results-dir RESULTS ...
export RESULTS=results_`date +%d%B_%HH%M_%A`
polyspace-c -results-dir `pwd`/$RESULTS ...

-sources
Specifies a list of source files to be verified.

The list of source files must be double-quoted and separated by commas.

• -sources "file1[file2[...]]" (Linux and Solaris™)

• -sources "file1[,file2[, ...]]" (Windows, Linux and Solaris)

• -sources-list-file file_name (not a graphical option)

1-92

Batch Options

Note UNIX standard wild cards are available to specify a number of files.

The source files are compiled in the order in which they are specified.

Note If you do not specify any files, the software verifies all files in the
source directory in alphabetical order.

Note The specified files must have valid extensions:
*.(c|C|cc|cpp|CPP|cxx|CXX)

Defaults:

sources/*.(c|C|cc|cpp|CPP|cxx|CXX)

Example Shell Script Entry under linux or solaris (files are separated
with a white space):

polyspace-c -sources "my_directory/*.cpp" ...
polyspace-c -sources "my_directory/file1.cc other_dir/file2.cpp"
...

Example Shell Script Entry under windows (files are separated with a
comma):

polyspace-c -sources "my_directory/file1.cpp,other_dir/file2.cc"
...

Using -sources-list-file, each file name need to be given with an absolute
path. Moreover, the syntax of the file is the following:

• One file by line.

• Each file name is given with its absolute path.

1-93

1 Option Descriptions for C Code

Note This option is only available in batch mode

Example Shell Script Entry for -sources-list-file:

polyspace-c -sources-list-file "C:\Analysis\files.txt"
polyspace-c -sources-list-file "/home/poly/files.txt"

-I
Specify the name of a folder that must be included when compiling C sources.
You can specify only one folder for each -I instance. However, you can specify
this option multiple times.

Polyspace software implicitly includes the ./sources folder (if it exists) after
any include folders that you specify.

Example Shell Script Entry-1:

polyspace-c -I /com1/inc -I /com1/sys/inc

is equivalent to

polyspace-c -I /com1/inc -I /com1/sys/inc -I ./sources

Example Shell Script Entry-2:

polyspace-c

is equivalent to

polyspace-c -I ./sources

-from
This option specifies the verification phase to start from. It can only be used
on an existing verification, possibly to elaborate on the results that you have
already obtained.

1-94

Batch Options

For example, if a verification has been completed -to pass1, Polyspace
verification can be restarted -from pass1 and hence save on verification time.

The option is usually used in a verification after one run with the -to option,
although it can also be used to recover after power failure.

Possible values are as described in the -to verification-phase section,
with the addition of the scratch option.

Note

• This option can be used only for client verifications. All server verifications
start from scratch.

• Unless the scratch option is used, this option can be used only if the
previous verification was launched using the option -keep-all-files .

• This option cannot be used if you modify the source code between
verifications.

Default :

scratch

Example Shell Script Entry :

polyspace-c -from c-to-il ...

-import-comments
Use option to automatically import coding rule and run-time check comments
and justifications from specified folder at the end of verification.

Default:

Disabled

1-95

1 Option Descriptions for C Code

Example Shell Script Entry:

polyspace-c -version 1.3 -import-comments C:\PolyspaceResults\1.2

-tmp-dir-in-results-dir
If you specify the new option -tmp-dir-in-results-dir, Polyspace does not
use the standard /tmp or C:\Temp folder to store temporary files. Instead,
Polyspace uses a subfolder of the results folder. This action may affect
processing speed if the results folder is mounted on a network drive. Use
this option only when the temporary folder partition is not large enough and
troubleshooting is required.

Default:

Disabled

Example Shell Script Entry:

polyspace-c -tmp-dir-in-results-dir -results-dir
C:\Polyspace\Results

-less-range-information
Limits the amount of range information displayed in verification results.

When you select this option, the software provides range information on
assignments, but not on reads and operators.

In addition, selecting this option enables the no-pointer-information
option. See “-no-pointer-information” on page 1-97.

Computing range information for reads and operators may take a long time,
and can reduce the precision of the verification (causing more orange checks).
Selecting this option can reduce verification time significantly, and improve
the precision of the verification. Consider the following example:

x = y + z;

1-96

Batch Options

If you do not select this option (the default), the software displays range
information when you place the cursor over x, y, z, or +. However, if you
select this option, the software displays range information only when you
place the cursor over x.

Default:

Disabled.

Example Shell Script Entry :

polyspace-c -less-range-information

-no-pointer-information
Stops the display of pointer information in verification results.

When you select this option, the software does not provide pointer information
through tooltips. As computing pointer information may take a long time,
selecting this option can significantly reduce verification time.

Consider the following example:

x = *p;

If you do not select this option (the default), the software displays pointer
information when you place the cursor on p or *. If you select this option, the
software does not display pointer information.

Default:

Disabled.

Example Shell Script Entry :

polyspace-c -no-pointer-information

1-97

1 Option Descriptions for C Code

-keep-all-files
Specify whether to retain all intermediate results and associated working files.

“-keep-all-files” on page 1-98

Settings
Default: Off

On
Retain all intermediate results and associated working files. You can
restart a verification from the end of any complete pass if the source
code remains unchanged.

Off
Erase all intermediate results and associated working files. If you want
to restart a verification, do so from the beginning.

Tips

• When you select this option you can restart Polyspace verification from
the end of any complete pass (provided the source code remains entirely
unchanged). If this option is not used, you must restart the verification
from scratch.

• This option is applicable only to client verifications. Intermediate results
are always removed before results are downloaded from the Polyspace
server.

• To cleanup intermediate files at a later time, you can select Tools > Clean
Results in the Launcher. This option deletes the preliminary result files
from the results folder.

Command-Line Information

Parameter: -keep-all-files
Example: polyspace-c -keep-all-files

1-98

Batch Options

-known-NTC
After a few verifications, you may discover that a few functions "never
terminate". Some functions such as tasks and threads contain infinite loops
by design, while functions that exit the program such as kill_task , exit or
Terminate_Thread are often stubbed by means of an infinite loop. If these
functions are used very often or if the results are for presentation to a third
party, it may be desirable to filter all NTC of that kind in the Viewer.

This option is provided to allow that filtering to be applied. All NTC specified
at launch will appear in the viewer in the known-NTC category, and filtering
will be possible.

Default :

All checks for deliberate Non Terminating Calls appear as red errors, listed
in the same category as any problem NTC checks.

Example Shell Script Entry :

polyspace-c -known-NTC "kill_task,exit"

polyspace-c -known-NTC "Exit,Terminate_Thread"

-asm-begin -asm-end
-asm-begin "mark1[mark2[...]] "

and

-asm-end "mark1[mark2[...]]"

These options are used to allow compiler specific asm functions to be excluded
from the verification, with the offending code block delimited by two #pragma
directives.

Consider the following example.

#pragma asm_begin_1
int foo_1(void) { /* asm code to be ignored by Polyspace */ }
#pragma asm_end_1

1-99

1 Option Descriptions for C Code

#pragma asm_begin_2
void foo_2(void) { /* asm code to be ignored by Polyspace */ }
#pragma asm_end_2

Where "asm_begin_1" and "asm_begin_2" marks the beginning of asm
sections which will be discarded and “asm_end_1”, respectively "asm_end_2"
mark the end of those sections.

Note The asm-begin and asm-end options must be used together.

Example Shell Script Entry:

polyspace-c -discard-asm -asm-begin "asm_begin_1,asm_begin_2"
-asm-end "asm_end_1,asm_end_2" …

-strict
This option selects the Strict mode of Polyspace verification. It is equivalent
to using the following options:

• -wall

• -no-automatic-stubbing

This option is not compatible with the options -asm-begin and -asm-end.

-permissive
This option selects the Polyspace permissive mode, which is equivalent to
using all of the following options:

• -ignore-constant-overflows

• -allow-negative operand-in-shift

1-100

Batch Options

-Wall
Specifies that the software display all possible warnings during the C
compliance phase.

Using this option can be an effective way to detect problems in the code
without using the MISRA checker.

For example, when you specify this option, the software adds the following
warning to the log file when trying to write into a const variable:

warning: assignment of read-only member <var>

Default:

By default, only warnings about compliance across different files
are printed.

Example Shell Script Entry:

polyspace-c -Wall ...

-report-output-name
Specify name of verification report file

Settings
Default: Prog_TemplateName.Format where:

• Prog is the argument of the prog option

• TemplateName is the name of the report template specified by the
report-template option

• Format is the file extension for the format specified by the
report-output-format option.

Command-Line Information

Parameter: report-output-name
Type: string

1-101

1 Option Descriptions for C Code

Value: any valid value
Default: Prog_TemplateName.Format

Shell script example:

polyspace-c -report-template my_template report-output-name Airbag_V3.rtf

1-102

Deprecated Options

Deprecated Options

In this section...

“-continue-with-red-error (Deprecated)” on page 1-103

“-continue-with-existing-host (Deprecated)” on page 1-103

“-allow-unsupported-linux (Deprecated)” on page 1-104

“-quick (Deprecated)” on page 1-104

-continue-with-red-error (Deprecated)

Note This option is deprecated in R2009a and later releases, and no longer
exists in the user interface. Verification now continues to the next integration
pass even if a red errors is encountered.

This option allows Polyspace verification to continue even if one of these
red errors is encountered. In most cases, this will mean that the dynamic
behavior of the code beyond the point where red errors are identified will be
undefined, unless the red code is actually inaccessible.

-continue-with-existing-host (Deprecated)

Note This option is deprecated in R2010a and later releases, and no
longer exists in the user interface. Polyspace verification now continues
regardless of the system configuration. The software still checks the hardware
configuration, and issues a warning if it does not satisfy requirements.

When this option is set, the verification will continue even if the system is
under specified or its configuration is not as preferred by Polyspace software.
Verified system parameters include the amount of RAM, the amount of swap
space, and the ratio of RAM to swap.

1-103

1 Option Descriptions for C Code

-allow-unsupported-linux (Deprecated)

Note This option is deprecated in R2010a and later releases, and no longer
exists in the user interface. Polyspace verification now continues regardless of
the Linux distribution. If the Linux distribution is not officially supported,
the software displays a warning in the log file.

This option specifies that Polyspace verification will be launched on an
unsupported OS Linux distribution.

-quick (Deprecated)

Note This option is deprecated in R2009a and later releases.

quick mode is obsolete and has been replaced with verification PASS0.
PASS0 takes somewhat longer to run, but the results are more complete.
The limitations of quick mode, (no NTL or NTC checks, no float checks,
no variable dictionary) no longer apply. Unlike quick mode, PASS0 also
provides full navigation in the Viewer.

This option is used to select a very fast mode for Polyspace .

This option allows results to be generated very quickly. These are suitable
for initial verification of red and gray errors only, as orange checks are too
plentiful to be relevant using this option.

1-104

2

Option Descriptions for C++
Code

• “Overview” on page 2-2

• “Machine Configuration” on page 2-3

• “Target & Compiler” on page 2-8

• “Coding Rules & Code Complexity Metrics” on page 2-29

• “Verification Mode” on page 2-36

• “Verification Assumptions” on page 2-54

• “Precision” on page 2-63

• “Post Verification” on page 2-71

• “Reporting” on page 2-73

• “Batch Options” on page 2-76

• “Deprecated Options” on page 2-90

2 Option Descriptions for C++ Code

Overview
In the Project Manager perspective, on the Configuration pane, you can
specify the analysis options (identification information and parameters) that
software uses for code verification.

Polyspace software groups the analysis options into various categories. To
display the parameters for a specific category, from the Configuration tree,
select the category.

Note From the command line, you can use the polyspace-cpp command to
specify parameters. The description for each parameter includes command
line information.

2-2

Machine Configuration

Machine Configuration

In this section...

“Machine Configuration Overview” on page 2-3

“Send to Polyspace Server” on page 2-3

“Add to results repository” on page 2-4

“Number of processes for multiple CPU core systems” on page 2-5

“Non-official options” on page 2-6

Machine Configuration Overview
Use Machine Configuration to specify where the verification is run,
data storage, and host machine features. You can also specify options that
MathWorks might provide for fine-tuning your verifications.

Send to Polyspace Server
Specify whether verification runs on the server or client system.

2-3

2 Option Descriptions for C++ Code

Settings
Default: On

On
Run verification on the Polyspace server. The server to use is specified
in the Polyspace preferences.

Off
Run verification on the client system.

Tips

• Specifying this option in the GUI sends the verification to the default
server.

• You specify the default server in the Server Configuration tab of the
Polyspace preferences dialog box (Options > Preferences).

• When specifying the -server option at the command line, you can specify
the name or IP address of a specific server, along with the port number.

• If you do not specify a server, the default server referenced in the
preferences file is used.

• If you do not specify a port number, port 12427 is used by default.

Command-Line Information

Parameter: -server
Value: name or IP address:port number
Example: polyspace-remote-desktop-cpp server
192.168.1.124:12400

Add to results repository
Specify whether verification results are added to the Polyspace Metrics results
database, allowing Web-based reporting of results and code metrics.

2-4

Machine Configuration

Settings
Default: Off

On
Verification results are stored in the Polyspace Metrics results database.
This allows you to use the Polyspace Metrics Web interface to view
verification results and code metrics.

Off
Verification results are not added to the database.

Dependency

• This option is available only for server verifications.

Command-Line Information

Parameter: -add-to-results-repository
Example: polyspace-cpp -server -add-to-results-repository

Number of processes for multiple CPU core systems
This option specifies the maximum number of processes that can run
simultaneously on a multi-core system. The valid range is 1 to 128.

Note To disable parallel processing, set: -max-processes 1.

Default:

4

Example Shell Script Entry:

polyspace-cpp -max-processes 1

2-5

2 Option Descriptions for C++ Code

Non-official options
This option specifies an expert option to be added to the analyzer. Each word
of the option (even the parameters) must be preceded by -extra-flags.

These flags will be given to you by MathWorks if required.

Default:

No extra flags.

Example Shell Script Entry:

polyspace-cpp -extra-flags -param1 -extra-flags -param2

-cpp-extra-flags flag
It specifies an expert option to be added to a C++ verification. Each word of
the option (even the parameters) must be preceded by -cpp-extra-flags.

These flags will be given to you by MathWorks if required.

Default:

no extra flags.

Example Shell Script Entry:

polyspace-cpp -cpp-extra-flags -stubbed-new-may-return-null

-il-extra-flags flag
It specifies an expert option to be added to a C++ verification. Each word of
the option (even the parameters) must be preceded by -il-extra-flags.

These flags will be given to you by MathWorks if required.

Default:

no extra flags.

2-6

Machine Configuration

Example Shell Script Entry:

polyspace-cpp -il-extra-flags flag

2-7

2 Option Descriptions for C++ Code

Target & Compiler

2-8

Target & Compiler

In this section...

“Target operating system” on page 2-10

“Target processor type” on page 2-11

“Generic target options” on page 2-12

“Dialect” on page 2-18

“Pack alignment value” on page 2-20

“Import folder” on page 2-20

“Ignore pragma pack directives” on page 2-20

“Support managed extensions” on page 2-21

“Enum type definition” on page 2-21

“Management of scope of ’for loop’ variable index” on page 2-22

“Management of w_char_t” on page 2-23

“Set wchar_t to unsigned long” on page 2-23

“Set size_t to unsigned long” on page 2-24

2-9

2 Option Descriptions for C++ Code

In this section...

“Preprocessor definitions” on page 2-24

“Undefined preprocessor definitions” on page 2-24

“Code from DOS or Windows file system” on page 2-25

“Continue with compile error” on page 2-26

“Overcome link error” on page 2-26

“Command/script to apply to preprocessed files” on page 2-26

“Include” on page 2-28

Target operating system
This option specifies the operating system target for Polyspace stubs.

Possible values are

• Linux (default)

• Solaris

• VxWorks

• Visual

• no-predefined-OS

This information allows the corresponding system definitions to be used
during preprocessing — to analyze the included files properly.

You can use the target -OS-target no-predefined-OS in conjunction with
-include and/or -D to give all of the system preprocessor flags to be used at
execution time. Details of these may be found by executing the compiler for
the project in verbose mode.

Default:

Linux

2-10

Target & Compiler

Note Only the Linux include files are provided with Polyspace software. If
you use Linux header files, you must set this option to Linux. Otherwise,
you see compilation errors.

Projects developed for use with other operating systems may be
analyzed using include files for the corresponding operating systems.
For instance, in order to analyze a VxWorks project, use the option -I
path_to_the_VxWorks_include_folder.

Example shell script entry:

polyspace-cpp -OS-target linux
polyspace-cpp -OS-target no-predefined-OS -D GCC_MAJOR=2 /

-include /complete_path/inc/gn.h ...

Target processor type
This option specifies the target processor type, and by doing so informs
Polyspace of the size of fundamental data types and of the endianess of the
target machine.

Possible values are:

• i386 (default)

• sparc

• m68k

• powerpc

• c-167

• x86_64

• mcpu...(Advanced)

mcpu is a reconfigurable Micro Controller/Processor Unit target. You can use
this type to configure one or more generic targets.

2-11

2 Option Descriptions for C++ Code

You can analyze code intended for an unlisted processor type using one of the
listed processor types, if they share common data properties. Refer to “Set Up
a Target” for more details.

For information on specifying a generic target, or modifying the mcpu target,
see “Generic target options” on page 2-12.

Note The generic target option is incompatible with any visual dialect.

Default:

i386

Example shell script entry:

polyspace-cpp -target m68k ...

Generic target options
The Generic target options dialog box opens when you select an mcpu target,
or a generic target.

This dialog box allows you to specify a generic "Micro Controller/Processor
Unit" or mcpu target name. Initially, use the dialog box to specify the name of
a new mcpu target – say, “MyTarget”.

Note The generic target option is incompatible with any visual dialect.

That new target is added to the -target options list. The new target’s default
characteristics are as follows, using the type [size, alignment] format.

• char [8, 8], char [16,16]

• short [16, 16]

• int [16, 16]

2-12

Target & Compiler

• long [32, 32], long long [32, 32]

• float [32, 32], double [32, 32], long double [32, 32]

• pointer [16, 16]

• char is signed

• little-endian

When using the command line, MyTarget is specified with all the options
for modification:

polyspace-cpp -target MyTarget

For example, a specific target uses 8 bit alignment (see also -align), for which
the command line would read:

polyspace-cpp -target mcpu -align 8

-little-endian
This option is only available when a -mcpu generic target has been chosen.

The endianness defines the byte order within a word (and the word order
within a long integer). Little-endian architectures are Less Significant byte
First (LSF), for example: i386.

For a little endian target, the less significant byte of a short integer (for
example 0x00FF) is stored at the first byte (0xFF) and the most significant
byte (0x00) at the second byte.

Example shell script entry:

polyspace-cpp -target mcpu -little-endian

-big-endian
This option is only available when a -mcpu generic target has been chosen.

2-13

2 Option Descriptions for C++ Code

The endianness defines the byte order within a word (and the word order
within a long integer). Big-endian architectures are Most Significant byte
First (MSF), for example: SPARC, m68k.

For a big endian target, the most significant byte of a short integer (for
example 0x00FF) is stored at the first byte (0x00) and the less significant
byte (0xFF) at the second byte.

Example shell script entry:

polyspace-cpp -target mcpu -big-endian

-default-sign-of-char [signed|unsigned]
This option is available for all targets. It allows a char to be defined as
"signed", "unsigned", or left to assume the mcpu target’s default behavior

Default mode:

The sign of char is left to assume the target’s default behavior. By default all
targets are considered as signed except for powerpc targets.

Signed:

Disregards the target’s default char definition, and specifies that a "signed
char" should be used.

Unsigned:

Disregards the target’s default char definition, and specifies that a "unsigned
char" should be used.

Example Shell Script Entry

polyspace-cpp -default-sign-of-char unsigned -target mcpu ...

-char-is-16bits
This option is available only when you select a mcpu generic target.

2-14

Target & Compiler

The default configuration of a generic target defines a char as 8 bits. This
option changes it to 16 bits, regardless of sign.

the minimum alignment of objects is also set to 16 bits and so, incompatible
with the options -short-is-8 bits and -align 8.

Setting the char type to 16 bits has consequences on the following:

• computation of size of for objects

• detection of underflow and overflow on chars

Without the option char for mcpu are 8 bits

Example shell script entry:

polyspace-cpp -target mcpu -char-is-16bits

-short-is-8bits
This option is only available when a generic target has been chosen.

The default configuration of a generic target defines a short as 16 bits. This
option changes it to 8 bits, irrespective of sign.

It sets a short type as 8-bit without specific alignment. That has consequences
for the following:

• computation of size of objects referencing short type

• detection of short underflow/overflow

Example shell script entry

polyspace-cpp -target mcpu -short-is-8bits

-int-is-32bits
This option is available with a generic target has been chosen.

2-15

2 Option Descriptions for C++ Code

The default configuration of a generic target defines an int as 16 bits. This
option changes it to 32 bits, irrespective of sign. Its alignment, when an int
is used as struct member or array component, is also set to 32 bits. See also
-align option.

Example shell script entry

polyspace-cpp -target mcpu -int-is-32bits

-long-long-is-64bits
This option is only available when a generic target has been chosen.

The default configuration of a generic target defines a long long as 32 bits.
This option changes it to 64 bits, irrespective of sign. When a long long is
used as struct member or array component, its alignment is also set to 64
bits. See also -align option.

Example shell script entry

polyspace-cpp -target mcpu -long-long-is-64bits

-double-is-64bits
This option is available when either a generic target has been chosen.

The default configuration of a generic target defines a double as 32 bits. This
option, changes both double and long double to 64 bits. When a double or
long double is used as a struct member or array component, its alignment
is set to 4 bytes.

See also -align option.

Defining the double type as a 64 bit double precision float impacts the
following:

- Computation of sizeofobjects referencing double type

- Detection of floating point underflow/overflow

2-16

Target & Compiler

Example

int main(void)
{
struct S {char x; double f;};
double x;
unsigned s1, s2;
s1 = sizeof (double);
s2 = sizeof(struct S);
x = 3.402823466E+38; /* IEEE 32 bits float point maximum value */
x = x * 2;
return 0;

}

Using the default configuration of sharc21x62, C Polyspace assumes that a
value of 1 is assigned to s1, 2 is assigned to s2, and there is a consequential
float overflow in the multiplication x * 2. Using the –double-is-64bits option,
a value of 2 is assigned to s1, and no overflow occurs in the multiplication
(because the result is in the range of the 64-bit floating point type)

Example shell script entry

polyspace-cpp -target mcpu -double-is-64bits

-pointer-is-32bits
This option is only available when a generic target has been chosen.

The default configuration of a generic target defines a pointer as 16 bits. This
option changes it to 32 bits. When a pointer is used as struct member or array
component, its alignment is also set also to 32 bits (see -align option).

Example shell script entry

polyspace-cpp -target mcpu -pointer-is-32bits

-align [8|16|32]
This option is available with an mcpu generic target and some other specific
targets. It is used to set the largest alignment of all data objects to 4/2/1
byte(s), meaning a 32, 16 or 8 bit boundary respectively.

2-17

2 Option Descriptions for C++ Code

The default alignment of a generic target is 32 bits. This means that when
objects with a size of more than 4 bytes are used as struct members or array
components, they are aligned at 4 byte boundaries.

Example shell script entry with a 32 bits default alignment
polyspace-cpp -target mcpu

-align 16. If the -align 16 option is used, when objects with a size of more
than 2 bytes are used as struct members or array components, they are
aligned at 2 bytes boundaries.

Example shell script entry with a 16 bits specific alignment:

polyspace-cpp -target mcpu -align 16

-align 8. If the -align 8 option is used, when objects with a size of more
than 1 byte are used as struct members or array components, are aligned
at 1 byte boundaries. Consequently the storage assigned to the arrays and
structures is strictly determined by the size of the individual data objects
without member and end padding.

Example shell script entry with a 8 bits specific alignment:

polyspace-cpp -target mcpu -align 8

Dialect
Specifies the dialect in which the code is written. Possible values are:

• gnu (default if -OS-target is set to Linux)

• cfront2

• cfront3

• iso

• visual

• visual6

• visual7.0

2-18

Target & Compiler

• visual7.1

• visual8

• visual9.0

visual6 activates dialect associated with code used for Microsoft Visual 6.0
compiler and visual activates dialect associated with Microsoft Visual 7.1
and subsequent.

If the dialect is visual (visual, visual6, visual7.0, visual7.1 visual8, and
visual9.0) the -OS-target option must be set to Visual.

If the dialect is visual, the option -dos, -OS-target Visual is set by default.

visual8 dialect activates support for Visual 2005 .NET specific compiler.
All Visual 2005 .NET given include files can compile both with the
-no-stl-stubs option and without it (recommended).

Note If you select the -jsf-coding-rules option and a dialect other than
iso or default, some JSF++ coding rules may not be completely checked.
For example, AV Rule 8: “All code shall conform to ISO/IEC 14882:2002(E)
standard C++.”

Default:

gnu if -OS-target is set to Linux

visual7.1 if -OS-target is set to visual

none otherwise

Example Shell Script Entry:

polyspace-cpp -dialect visual8 ...

2-19

2 Option Descriptions for C++ Code

Pack alignment value
Visual C++ /Zp option specifies the default packing alignment for a project.
Option -pack-alignment-value transfers the default alignment value to
Polyspace verification.

The argument value must be: 1, 2, 4, 8, or 16. Verification will halt and
display an error message with a bad value or if this option is used in non
visual mode (-OS-target visual or -dialect visual* (6, 7.0 or 7.1)).

Default:

8

Example Shell Script Entry:

polyspace-cpp dialect visual pack-alignment-value 4 ...

Import folder
One directory to be included by #importdirective. This option must be used
with -OS-target visual or -dialect visual* (6, 7.0, 7.1 and 8). It gives the
location of *.tlh files generated by a Visual Studio compiler when encounter
#import directive on *.tlb files.

Example Shell Script Entry:

polyspace-cpp -dialect visual8 -import-dir /com1/inc ...

Ignore pragma pack directives
C++ #pragma directives specify packing alignment for structure, union, and
class members. The -ignore-pragma-pack option allows these directives to be
ignored in order to prevent link errors.

Polyspace verification stops execution and displays an error message if this
option is used in non visual mode or without dialect gnu (without -OS-target
visual or –dialect visual*). See also “Link messages” .

Example Shell Script Entry:

2-20

Target & Compiler

polyspace-cpp dialect visual ignore-pragma-pack ...

Support managed extensions
Visual C++ /FX option allows the partial translation of sources making use
of managed extensions to Visual C++ sources without managed extensions.
Theses extensions are currently not taken into account by Polyspace
verification and can be considered as a limitation to analyze this kind of code.

Using /FX, the translated files are generated in place of the original ones in
the project, but the names are changed from foo.ext to foo.mrg.ext.

Option – support-FX-option-results allows the verification of a project
containing translated sources obtained by compilation of a Visual project
using the /FX Visual option. Managed files need to be located in the same
folder as the original ones and Polyspace software will verify managed files
instead of the original ones without intrusion, and will permit you to remove
part of the limitations due to specific extensions.

Polyspace verification stops execution and displays an error message if this
option is used in non visual mode (-OS-target visual or -dialect visual* (6,
7.0 or 7.1)).

Example Shell Script Entry:

polyspace-cpp dialect visual - support-FX-option-results

Enum type definition
Allows the verification to use different base types to represent an enumerated
type, depending on the enumerator values and the selected definition.

When using this option, each enum type is represented by the smallest
integral type that can hold all its enumeration values.

Possible values are:

• defined-by-standard – Uses the first type that can hold all of the
enumerator values from the following list: signed int, unsigned int,
signed long, unsigned long, signed long long, unsigned long long

2-21

2 Option Descriptions for C++ Code

• auto-signed-first - Uses the first type that can hold all of the enumerator
values from the following list: signed char, unsigned char, signed
short, unsigned short, signed int, unsigned int, signed long,
unsigned long, signed long long, unsigned long long.

• auto-unsigned-first - Uses the first type that can hold all of the
enumerator values from the following lists:

- If enumerator values are all positive: unsigned char, unsigned short,
unsigned int, unsigned long, unsigned long long.

- If one or more enumerator values are negative: signed char, signed
short, signed int, signed long, signed long long.

Management of scope of ’for loop’ variable index
This option changes the scope of the index variable declared within a for
loop. For example:

for (int index=0; ...){};

index++; // At this point, index variable is usable (out) or not (in)

You can specify one of the following values:

• defined-by-dialect— Default behavior specified by selected dialect.

• out — Default behavior for the -dialect options cfront2, crfront3,
visual6, visual7 and visual 7.1.

• in — Default behavior for all other dialects, including visual8. The C++
standard specifies that the index is treated as in.

This option allows the default behavior implied by the Polyspace -dialect
option to be overridden.

This option is equivalent to the Visual C++® options /Zc:forScope and
Zc:forScope-.

Default:

defined-by-dialect

Example Shell Script Entry:

2-22

Target & Compiler

polyspace-cpp -for-loop-index-scope in

Management of w_char_t
With this option, you can force wchar_t to be treated as a:

• Keyword as given by the C++ standard

• typedef statement specified by Microsoft Visual C++ 6.0/7.x dialects.

You can specify one of the following values’:

• defined-by-dialect— Default behavior specified by selected dialect.

• typedef — Default behavior for -dialect options visual6, visual7.0
and visual7.1.

• keyword— Default behavior for all others dialects including visual8.

This option allows the default behavior implied by the Polyspace -dialect
option to be overridden.

This option is equivalent to the Visual C++ options /Zc:wchar and
/Zc:wchar-.

Default:

defined-by-dialect

Example Shell Script Entry:

polyspace-cpp -wchar-t-is typedef

Set wchar_t to unsigned long
This option forces the “underlying type” as defined in the C++ standard
to be unsigned long.

For example, sizeof(L’W’) will have the value of sizeof(unsigned long) and
the wchar_t field will be aligned in the same way as the unsigned long field.
Note that wchar_t will remain a different type from unsigned long unless

2-23

2 Option Descriptions for C++ Code

“-wchar-t-is typedef” is set or implied by the current dialect. The default
underlying type of wchar_t is unsigned short.

Example Shell Script Entry:

polyspace-cpp -wchar-t-is-unsigned-long ...

Set size_t to unsigned long
Indicates the expected typedef of size_t to the software; forces the size_t type
to be unsigned long. The default type of size_t is unsigned int.

Example Shell Script Entry: polyspace-cpp
-size-t-is-unsigned-long ...

Preprocessor definitions
Define macro compiler flags to be used during compilation phase.

You can specify only one flag with each -D option. However, you can specify
the option multiple times.

Default:

Some defines are applied by default, depending on your -OS-target option.

Example Shell Script Entry:

polyspace-cpp -D HAVE_MYLIB -D USE_COM1 ...

Undefined preprocessor definitions
Undefine macro compiler flags.

You can specify only one flag with each -U option. However, you can specify
the option multiple times.

Default:

Some undefines may be set by default, depending on your -OS-target option.

2-24

Target & Compiler

Example Shell Script Entry:

polyspace-cpp -U HAVE_MYLIB -U USE_COM1 ...

Code from DOS or Windows file system

Use this option when the contents of the include or source folder comes from
a DOS or Windows file system. It deals with upper/lower case sensitivity
and control character issues.

The affected files are:

• Header files in all include folders specified through the -I option.

• All source files selected for the verification through the -sources option.

For example, with this option,

#include "..\mY_TEst.h"^M

#include "..\mY_other_FILE.H"^M

resolves to:

#include "../my_test.h"

#include "../my_other_file.h"

Default:

Enabled

Example Shell Script Entry:

polyspace-cpp -I /usr/include -dos -I
./my_copied_include_dir -D test=1

2-25

2 Option Descriptions for C++ Code

Continue with compile error
Specifies that verification continues even if some source files do not compile.
Functions that are used but not specified are stubbed automatically.

If a source file contains global variables, you may also need to select the option
-allow-undef-variables to enable verification.

Example Shell Script Entry :

polyspace-cpp -continue-with-compile-error ...

Overcome link error
Some functions may be declared inside an extern “C” { } bloc in some files and
not in others. Then, their linkage is not the same and it causes a link error
according to the ANSI standard.

Applying this option will cause Polyspace to ignore this error.

This permissive option may not solve all the extern C linkage errors.

Example Shell Script Entry:

polyspace-cpp -no-extern-C ...

Command/script to apply to preprocessed files
When this option is used, the specified script file or command is run just
after the pre-processing phase on each source file. The script executes for
each preprocessed c file. The command should be designed to process the
standard output from preprocessing and produce its results in accordance
with that standard output.

Note The Compilation Assistant is automatically disabled when you specify
this option.

Default:

2-26

Target & Compiler

No command.

Example Shell Script Entry – file name:

To replace the keyword “Volatile” with “Import”, you can type the following
command on a Linux workstation:

polyspace-cpp -post-preprocessing-command `pwd`/replace_keywords

where replace_keywords is the following script :

#!/usr/bin/perl
my $TOOLS_VERSION = "V1_4_1";
binmode STDOUT;

Process every line from STDIN until EOF
while ($line = <STDIN>)
{

Change Volatile to Import
$line =~ s/Volatile/Import/;
print $line;

}

Note If you are running Polyspace software version 5.1 (r2008a) or later on
a Windows system, you cannot use Cygwin shell scripts. Since Cygwin is
no longer included with Polyspace software, all files must be executable by
Windows. To support scripting, the Polyspace installation now includes Perl:

Polyspace_Install\sys\perl\win32\bin\perl.exe

To run the Perl script provided in the previous example on a Windows
workstation, you must use the option -post-preprocessing-command with
the absolute path to the Perl script, for example:

Polyspace_Install\polyspace\bin\polyspace-cpp.exe
-post-preprocessing-command
Polyspace_Install\sys\perl\win32\bin\perl.exe
<absolute_path>\replace_keywords

2-27

2 Option Descriptions for C++ Code

Include
This option is used to specify files to be included by each C++ file involved in
the verification.

Default:

No file is universally included by default, but directives such as "#include
<include_file.h>" are acted upon.

Example Shell Script Entry:

polyspace-cpp -include `pwd`/sources/a_file.h -include
/inc/inc_file.h ...

polyspace-cpp -include /the_complete_path/my_defines.h ...

2-28

Coding Rules & Code Complexity Metrics

Coding Rules & Code Complexity Metrics

In this section...

“Check MISRA C++ rules” on page 2-29

“MISRA C++ rules configuration” on page 2-30

“Check JSF C++ rules” on page 2-31

“JSF C++ rules configuration” on page 2-31

“Check custom rules” on page 2-33

“Files and folders to ignore” on page 2-33

“Calculate code complexity metrics” on page 2-34

Check MISRA C++ rules
Specifies that Polyspace software checks for compliance with the MISRA C++
coding standards (MISRA C++:2008).

The results are included in the log file of the verification.

For more information, see “Set Up Coding Rules Checking”.

2-29

2 Option Descriptions for C++ Code

MISRA C++ rules configuration
Specifies set of coding rules to check.

• required-rules — Check all required MISRA C++ coding rules. All
violations are reported as warnings.

• all-rules— Check all required and advisory coding rules. All violations
are reported as warnings.

• SQO-subset1 — Check a subset of MISRA C++ rules that have a direct
impact on the selectivity of verification. All violations are reported as
warnings. For more information, see “SQO Subset 1 – Direct Impact on
Selectivity”.

• SQO-subset2 — Check a second subset of MISRA C++ rules that have
an indirect impact on the selectivity of verification, as well as the rules
contained in SQO-subset1. All violations are reported as warnings. For
more information, see “SQO Subset 2 – Indirect Impact on Selectivity”.

• custom — Check a specified set of MISRA C++ coding rules. You must
provide the name of a file containing a list of MISRA C++ rules to check.

Note If you specify -misra-cpp, the -Wall option is disabled.

Format of the file:

<rule number> off|error|warning
is considered a comment.

Example:

MISRA-C++ rules configuration file
Generated by Polyspace

0-1-1 warning
0-1-2 warning
0-1-7 warning
0-1-8 off
0-1-9 off
0-1-10 warning

2-30

Coding Rules & Code Complexity Metrics

0-1-11 off
0-1-12 off
1-0-1 error
1-0-2 off # Not implemented
1-0-3 off # Not implemented
2-2-1 off # Not implemented
2-3-1 warning
2-5-1 warning
2-7-1 warning

End of file

Default:

Disabled

Example shell script entry:

polyspace-cpp -misra-cpp all-rules

polyspace-cpp -misra-cpp misra.txt

Check JSF C++ rules
Specifies that Polyspace software checks for compliance with the Joint Strike
Fighter Air Vehicle C++ coding standards (JSF++:2005).

The results are included in the log file of the verification.

For more information, see “Set Up Coding Rules Checking”.

JSF C++ rules configuration
Specifies which JSF++ coding rules to check.

• shall-rules — Check all Shall rules, which are mandatory rules that
require verification.

• shall-will-rules — Check all Shall and Will rules. Will rules are
mandatory rules that do not require verification.

2-31

2 Option Descriptions for C++ Code

• all-rules— Check all Shall, Will, and Should rules. Should rules are
advisory rules.

• custom— Check a specified set of JSF C++ coding rules. When you select
this option, you must provide a rules file that specifies the JSF C++ rules to
check and whether to report an error or warning for violations of each rule.
For more information, see “Create a MISRA or JSF C++ Coding Rules File”.

Note If you specify -jsf-coding-rules, the -Wall option is disabled.

Note If your project uses a dialect other than ISO, some JSF++ coding rules
may not be completely checked. For example, AV Rule 8: “All code shall
conform to ISO/IEC 14882:2002(E) standard C++.”

Format of the file:

<rule number> off|error|warning
is considered a comment.

Example:

JSF-CPP rules configuration file
1 off # disable AV Rule number 1
2 off # Not implemented
3 off # disable AV Rule 3
8 error # violation AV Rule 8 is error
9 warning # violation AV Rule 9 is only a warning
End of file

Default:

Disabled

Example shell script entry:

polyspace-cpp -jsf-coding-rules all-rules

2-32

Coding Rules & Code Complexity Metrics

polyspace-cpp -jsf-coding-rules jsf.txt

Check custom rules
Check names or text patterns in source code with reference to custom rules in
specified text file. Each rule defines a check of a specified pattern against a
source code identifier. For more information, see “Create a Custom Coding
Rules File”.

Default:

Disabled

Example Shell Script Entry

polyspace-cpp -custom-rules myrules.txt

Files and folders to ignore
Specify files or folders that the coding rules checker should ignore. For
example, you can specify this option if you use headers that do not conform
to the JSF++ or MISRA C++ standard. You can specify the following values
with this option:

• all-headers (default) — Exclude folders specified by the -I option that
contain only header files, that is, folders with no source files.

• all— Exclude all include folders specified by the -I option. For example,
if you are checking a large code base with standard or Visual headers,
excluding all include folders can significantly improve the speed of code
analysis.

• custom — Exclude files and folders that you specify.

The software displays a warning if:

• A specified file or folder does not exist

• All source code is ignored

2-33

2 Option Descriptions for C++ Code

You can specify this option only if you specify the -jsf-coding-rules,
-misra-cpp, or -custom-rules option.

Example shell script entry :

polyspace-cpp -jsf-coding-rules jsf.txt includes-to-ignore all

polyspace-cpp -jsf-coding-rules jsf.txt includes-to-ignore
"c:\usr\include"

Calculate code complexity metrics
“Calculate code complexity metrics” on page 2-34

Specify whether to calculate software quality metrics, such as cyclomatic
number, during verification.

Note This option requires a Polyspace Client for C/C++ license.

Settings
Default: On

On
Calculate software quality metrics, including project metrics, file
metrics, and function metrics.

Off
Do not calculate software quality metrics.

Tips

• You can view software quality metrics data in the Polyspace Metrics Web
interface, or by running a Software Quality Objectives report from the
Polyspace verification environment.

• Project metrics include number of recursions, number of include headers,
and number of files.

2-34

Coding Rules & Code Complexity Metrics

• File metrics include comment density, and number of lines.

• Function metrics include cyclomatic number, number of static paths,
number of calls, and Language scope.

Command-Line Information

Parameter: -code-metrics
Example: polyspace-cpp -code-metrics

2-35

2 Option Descriptions for C++ Code

Verification Mode

2-36

Verification Mode

In this section...

“Main entry point” on page 2-38

“Entry points” on page 2-39

“Critical section details” on page 2-39

2-37

2 Option Descriptions for C++ Code

In this section...

“Temporally exclusive tasks” on page 2-40

“Verify module” on page 2-41

“Class name” on page 2-42

“Methods to call within the specified classes” on page 2-43

“Analyze class contents only” on page 2-44

“Skip member initialization check” on page 2-44

“Functions to call” on page 2-46

“Variables to initialize” on page 2-47

“Initialization functions” on page 2-47

“Run unit by unit verification” on page 2-49

“Unit by unit common source files” on page 2-50

“Variable/function range setup” on page 2-50

“No automatic stubbing” on page 2-51

“No STL stubs” on page 2-52

“Functions to stub” on page 2-52

Note Concurrency options are not compatible with Main Generator options.

Main entry point
The option specifies the name of the main subprogram when you select a
visual –OS-target. This procedure will be analyzed after class elaboration, and
before tasks in case of a multitask application or in case of the -entry-points
usage.

Possible values are:

• _tmain (default)

• wmain

2-38

Verification Mode

• _tWinMain

• wWinMain

• WinMain

• DllMain.

However, if the main subprogram does not exist and the option
-main-generator is not set, Polyspace verification stops with an error message.

Default:

_tmain

Example Shell script entry:

polyspace-cpp -main WinMain OS-target visual

Entry points
This option is used to specify the tasks/entry points to be analyzed by
Polyspace software, using a Comma-separated list with no spaces.

These entry points must not take parameters. If the task entry points are
functions with parameters they should be encapsulated in functions with no
parameters, with parameters passed through global variables instead.

Format:

• All tasks must have the prototype “void any_name() .

• It is possible to declare a member function as an entry point of a verification,
only and only if the function is declared “static void task_name()”.

Example Shell Script Entry:

polyspace-cpp -entry-points class::task_name,taskname,proc1,proc2

Critical section details
-critical-section-begin "proc1:cs1[,proc2:cs2]"

2-39

2 Option Descriptions for C++ Code

and

-critical-section-end "proc3:cs1[,proc4:cs2]"

These options specify the procedures beginning and ending critical sections,
respectively. Each uses a list enclosed within double quotation marks (),
with list entries separated by commas, and no spaces. Entries in the lists take
the form of the procedure name followed by the name of the critical section,
with a colon separating them.

These critical sections can be used to model protection of shared resources,
or to model interruption enabling and disabling.

Limitation:

• Name of procedure accept only void any_name() as prototype.

• The beginning and the end of the critical section need to be defined in same
block of code.

Default:

no critical sections.

Example Shell Script Entry:

polyspace-cpp -critical-section-begin "start_my_semaphore:cs" \

-critical-section-end "end_my_semaphore:cs"

Temporally exclusive tasks
This option specifies the name of a file. That file lists the sets of tasks which
never execute at the same time (temporal exclusion).

The format of this file is :

• one line for each group of temporally excluded tasks,

• on each line, tasks are separated by spaces.

2-40

Verification Mode

Default:

No temporal exclusions.

Example Task Specification file

File named ’exclusions’ (say) in the ’sources’ folder and containing:

task1_group1 task2_group1

task1_group2 task2_group2 task3_group2

Example Shell Script Entry :

polyspace-cpp -temporal-exclusions-file sources/exclusions \

-entry-points task1_group1,task2_group1,task1_group2,\

task2_group2,task3_group2 ...

Verify module
The option specifies that Polyspace software generate a main subprogram, if
it does not find a main.

Selecting this option allows you to specify the following options:

• Generate a Main Using a Given Class

• Function calls

• First functions to call

• Write accesses to global variables

Default:

Disabled

Example Shell script entry:

2-41

2 Option Descriptions for C++ Code

polyspace-cpp -main-generator

Class name
Polyspace for C++ is a class analyzer. If a main program is present in the
set of files that you submit for verification then the verification proceeds
with that main program. Otherwise, you can choose not to provide a main
program and select a single class instead.

The Class name option specifies the class for the generated main.

Valid options are:

• custom (default) – The specified classes are used to generate the main.
You must provide a list of classes.

• all — Every class is used to generate the main.

• none — No classes are used to generate the main.

Selected member functions (defined by the option -class-analyzer-calls)
of the specified classes are called by the generated main.

If you select all or custom, and set -class-analyzer-calls, then the option
-main-generator-calls is automatically set to unused, unless you explicitly
set another value for -main-generator-calls.

If any class name you specify does not exist in the application, the verification
will stop. All public and protected function members declared within the class,
whether they are called within the code or not, will be analyzed separately
and called by a generated main.

This generated main is not code compliant but is visible in the graphical user
interface within the _polyspace_main.cpp file. Note that it initializes all
global variables to random (see “How the Class Analyzer Works”.

Note This option can be specified only if you specify the option
-class-analyzer.

2-42

Verification Mode

Example shell script entry:

polyspace-cpp -main-generator class-analyzer MyClass
polyspace-cpp class-analyzer MyNamespace::MyClass

Methods to call within the specified classes
Use this option to verify eligible methods of the classes specified by the option
-class-analyzer. Eligible methods are static, public, and protected methods
of the specified classes.

Values:

• all— Default. The generated main calls all public and protected methods
of the specified classes. Members inherited from a parent class are not
called.

• all-public— The generated main calls all public methods of the specified
classes but does not call protected methods.

• inherited-all — The generated main calls all public and protected
methods of the specified classes and methods inherited from the parents
of these classes.

• inherited-all-public— The generated main calls all public methods of
the specified classes and the parents of these classes.

• unused— The generated main calls all public and protected methods that
are not called within the specified classes.

• unused-public—With the exception of protected methods, the generated
main calls all methods that are not called within the specified classes.

• inherited-unused — The generated main calls all public and protected
methods that belong to the specified classes and their parents and are not
called by another method.

• inherited-unused-public— The generated main calls all public methods
that belong to the specified classes and their parents and are not called
by another method.

• custom— The generated main calls the methods that you provide in a list.

Default:

2-43

2 Option Descriptions for C++ Code

all

Example Shell Script Entry:

polyspace-cpp class-analyzer MyClass class-analyzer-calls
unused ...

Analyze class contents only
This option can only be used with the option –class-analyzer. If the
-class-analyzer option is not used, verification stops and displays an error
message.

With the option class-only, only functions associated to the specified
classes are verified. All functions out of class scope are automatically stubbed
even if they are defined in the source code.

Default:

disable

Example Shell Script Entry:

polyspace-cpp class-analyzer MyClass class-only...

Skip member initialization check
By default, Polyspace verification checks for member initialization just after
object construction and initialization with -functions-called-before-main
when using -class-analyzer.

This option can only be used with class-analyzer. If the option
-class-analyzer is not used, verification stops and displays an error
message.

Without this option, in the generated main in __polyspace_main.cpp file,
you will find some added code checks like on the simple example below using
-class-analyzer A options:

class A {

2-44

Verification Mode

public: int i ; int *j ; int k; int l;
A() : i(0), j(0), k(0) { ; }
A(int a) : i(a), k(0) { ; }
void foo() {

i = 1; i++;
j = (int *) 0x0100; j++;
l = 1; l++;}

};

In __polyspace_main.cpp after a call to the constructor(s) and function
called before main:

check_NIV(__polyspace__A__this->i); // green NIV
check_NIP(__polyspace__A__this->j); // orange NIP
check_NIV(__polyspace__A__this->k);/* member has been detected as \

never read */
// gray NIV

check_NIV(__polyspace__A__this->l); // red NIV

• i is always initialized, read and written in foo — green NIV

• j is initialized in one constructor only, read and written in foo — orange
NIP

• k is always initialized, but never read and written outside the constructors
— gray

• l is never initialized in the constructors — red NIV

When this option is applied, no further check of member variables’
initialization is made.

Default:

Check is made for member scalars, floats and pointer member variables.

Example Shell Script Entry:

polyspace-cpp class-analyzer MyClass no-constructors-init-check
...

2-45

2 Option Descriptions for C++ Code

Functions to call
Use this option with the -main-generator option to specify the functions
to be called.

Set this option to unused (default) when you run a unit-by-unit verification.

Eligible functions:

Every function declared outside a class and defined in the source code to
analyze, is considered as eligible when using the option.

The list of functions contains a list of short name (name without signature)
separated by comas. If the name of a function from the list is associated
to a function not defined in the source code, Polyspace verification stops
and displays an error message. If the name of a function from the list is
ambiguous, all the functions with the same short name are called. If a
function from the list does not belong or is not eligible, Polyspace verification
stops and displays an error message. This error message is put in the log file.

Values:

• none – No function is called. This can be used with a multitasking
application without a main, for instance.

• unused (default) – Call all functions not already called within the code.
Inline functions will not be called by the generated main.

• all – all functions except inline will be called by the generated main.

• custom – Only functions present in the list are called from the main. Inline
functions can be specified in the list and will be called by the generated
main.

Selecting unused, all, or custom automatically sets -class-analyzer none,
unless you explicitly set the -class-analyzer option.

An inline (static or extern) function is not called by the generated main
program with values all or unused. An inline function can only be called
with custom value:

-main-generator-calls custom=my_inlined_func

2-46

Verification Mode

Example:

polyspace-cpp -main-generator -main-generator-calls
custom=function_1,function_2

Variables to initialize
This option is used with the main generator options –class-analyzer and
–main-generator-calls to dictate how the generated main will initialize global
variables.

Settings available:

• uninit – main generator writes random on not initialized global variables.

• none – no global variable will be written by the main.

• public – every variable except static and const variables are assigned a
“random” value, representing the full range of possible values

• all – every variable is assigned a “random” value, representing the full
range of possible values

• custom – only variables present in the list are assigned a “random” value,
representing the full range of possible values

Example

polyspace-cpp class-analyzer MyClass
-main-generator-writes-variables uninit

polyspace-cpp -main-generator -main-generator-writes-variables
custom=variable_a,variable_b

Initialization functions
This option is used with the main generator option –main-generator-calls to
specify a function, or list of functions, which will be called before all selected
functions in the main.

Eligible functions:

2-47

2 Option Descriptions for C++ Code

Every function or method defined in the source code to analyze is considered
as eligible when using the option.

If the function or method is not overloaded, simply specify the name of the
function. If the function or method is overloaded, you must specify the full
prototype, including the type of argument (but not the name of argument).

If the function is not defined in the source code, the verification continues
with a warning message.

If the function is an out of class function, it is called before any other call.

If the function is a method, it is called after call of its constructor.

If the function is not qualified (if it is not preceeded by its class name, if it has
no signature) and if it is ambiguous, every matching function will be called.
For example, if a coding convention is to have a function "init" in each class,
putting -functions-called-before-main init implies that in each class,
the init function will be called after the constructor call.

If two init functions in a class have different parameter types, the two
functions will be called.

Unit-by-unit verification:

When performing unit-by-unit verification (using use the option
-unit-by-unit) the behavior of -functions-called-before-main changes
depending on the type of init function you specify.

When you set the option -functions-called-before-main in unit-by-unit
mode:

• If the init function is an out of class function, it is called at the beginning
of the generated main (before the "if random" block of classes).

• If the init function is a method (function member of a class), it is called
after all constructor calls of the corresponding class. If several classes are
present in the unit, the software displays a warning explaining that the
function called before main will be called only with the concerned class.

2-48

Verification Mode

Example:

polyspace-cpp -main-generator-calls unused
-functions-called-before-main MyFunction1,MyFunction2

Run unit by unit verification
This option creates a separate verification job for each source file in the
project.

Each file is compiled, sent to the Polyspace Server, and verified individually.
Verification results can be viewed for the entire project, or for individual units.

This option is only available for server verifications. It is not compatible with
multitasking options such as -entry-points.

A unit-by-unit verification calls functions and classes as follows:

1 All UNUSED functions are called.

2 All UNUSED public and protected member functions of a class are called.

For example, in the following class Base, only reqOn is called by the generated
main:

class Base
{
public:
void reqOn(void);
virtual bool actOn(void);
};

#include "Base.h"

void Base::reqOn ()
{
bool a;
a = actOn();
}

2-49

2 Option Descriptions for C++ Code

bool Base::actOn ()
{
bool a;
return a;
}

Default:

Not selected

Example Shell Script Entry:

polyspace-cpp -unit-by-unit

Unit by unit common source files
Specifies a list of files to include with each unit verification. These files are
compiled once, and then linked to each unit before verification. Functions
not included in this list are stubbed.

Default:

None

Example Shell Script Entry:

polyspace-cpp -unit-by-unit-common-source
c:/polyspace/function.cpp

Variable/function range setup
This option permits the setting of specific data ranges for a list of given
global variables.

For more information, see “Specify Data Ranges for Variables and Functions
(Contextual Verification)” .

File format:

The file filename contains a list of global variables with the below format:

2-50

Verification Mode

variable_name val_min val_max <init|permanent|globalassert>

Variables scope:

Variables do not have to be defined variables, that is, could be extern with
option -allow-undef-variables.

Note Only one mode can be applied to a global variable.

No checks are added with this option except for globalassert mode.

Some warning can be displayed in log file concerning variables when format
or type is not in the scope.

Default:

Disable.

Example shell script entry:

polyspace-cpp -data-range-specifications range.txt ...

No automatic stubbing
By default, Polyspace verification automatically stubs all functions. When
this option is used, the list of functions to be stubbed is displayed and the
verification is stopped.

Benefits:

This option may be used where

• The entire code is to be provided, which may be the case when analyzing
a large piece of code. When the verification stops, it means the code is
not complete.

• Manual stubbing is preferred to improve the selectivity and speed of the
verification.

2-51

2 Option Descriptions for C++ Code

Default:

All functions are stubbed automatically

No STL stubs
Polyspace provide an efficient implementation of part of the Standard library
(STL). This implementation may not be compatible with includes files of the
applications. In that case some linking errors could arise.

With this option Polyspace does not use this implementation of the STL.

Example Shell Script Entry:

polyspace-cpp -no-stl-stubs ...

Functions to stub
Specifies functions that you want the software to stub.

Enter a comma-separated list of functions. For example,
function_1,function_2.

When entering function names, two syntaxes are supported for C++:

• Basic syntax, with extensions for classes and templates:

Function Type Syntax

Simple function test

Class method A::test

Template method A<T>::test

• Syntax with function arguments, to differentiate overloaded functions.
Function arguments are separated with semicolons:

2-52

Verification Mode

Function Type Syntax

Simple function test()

Class method A::test(int;int)

Template method A<T>::test(T;T)

Note All overloaded versions of the function will be discarded.

The following special characters are allowed for C++:

() < > ; _ * & [] and space.

Example Shell Script Entry:

polyspace-cpp -functions-to-stub function_1,function_2 ...

2-53

2 Option Descriptions for C++ Code

Verification Assumptions

In this section...

“Respect types in fields” on page 2-55

“Respect types in global variables” on page 2-56

“Ignore float rounding” on page 2-57

“Green absolute address checks” on page 2-58

2-54

Verification Assumptions

In this section...

“Ignore overflowing computations on constants” on page 2-59

“Allow negative operand for left shifts” on page 2-59

“Detect overflows on” on page 2-60

“Overflows computation mode” on page 2-62

Respect types in fields
This is a scaling option, designed to help process complex code. When it is
applied, Polyspace verification assumes that structure fields not declared as
containing pointers are never used for holding pointer values. This option
should only be used with Type-safe code, when it does not cause a loss of
precision. See also -respect-types-in-globals .

In the following example, we will lose precision using option
respect-types-in-fields option:

struct {
unsigned x;
int f1;
int *z[2];

} S1;

void funct2(void) {
int *tmp;
int y;
((int**)&S1)[0] = &y; /* S1.x points on y */
tmp = (int*)S1.x;
y=0;
tmp = 1; / write 1 into y */
assert(y==0);

}

Polyspace verification will not take care that S1.x contains the address of y
resulting a green assert.

Default:

2-55

2 Option Descriptions for C++ Code

Polyspace verification assumes that structure fields may contain pointer
values.

Example Shell Script Entry:

polyspace-cpp -respect-types-in-fields ...

Respect types in global variables
This is a scaling option, designed to help process complex code. When it is
applied, Polyspace verification assumes that global variables not declared as
containing pointers are never used for holding pointer values. This option
should only be used with Type-safe code, when it does not cause a loss of
precision. See also -respect-types-in-fields.

In the following example, we will lose precision using the
–respect-types-in-globals option:

int x;
void t1(void) {
int y;
int *tmp = &x;
*tmp = (int)&y;
y=0;
(int)x = 1; // x contains address of y
assert (y == 0); // green with the option

}

Polyspace verification will not take care that x contains the address of y
resulting a green assert.

Default:

Polyspace verification assumes that global variables may contain pointer
values.

Example Shell Script Entry:

polyspace-cpp -respect-types-in-globals ...

2-56

Verification Assumptions

Ignore float rounding
Without this option, Polyspace verification rounds floats according to the
IEEE 754 standard: simple precision on 32-bits targets and double precision
on target which define double as 64-bits. With the option, exact computation
is performed.

Example

1
2 void ifr(float f)
3 {
4 double a = 1.27;
5 if ((double)1.27F == a) {
6 assert (1);
7 f = 1.0F * f;
8 // reached when -ignore-float-rounding is used or not
9 }
10 else {
11 assert (1);
12 f = 1.0F * f;
13 // reached when compiled under Visual and when
-ignore-floatrounding is not used
14 }
15 }

Using this option can lead to different results compared to the "real life"
(compiler and target dependent): Some paths will be reachable or not for
Polyspace verification while they are not (or are) depending of the compiler
and target. So it can potentially give approximate results (green should be
unproven). This option has an impact on OVFL checks on floats.

However, this option allows reducing the number of unproven checks because
of the “delta” approximation.

For example:

• FLT_MAX (with option set) = 3.40282347e+38F

• FLT_MAX (following IEEE 754 standard) = 3.40282347e+38F ± Δ

2-57

2 Option Descriptions for C++ Code

1
2 void ifr(float f)
3 {
4 double a = 1.27;
5 if ((double)1.27F == a) {
6 assert (1);
7 f = 1.0F * f; // Overflow never occurs because f <= FLT_MAX.
8 // reached when -ignore-float-rounding is used
9 }
10 else {
11 assert (1);
12 f = 1.0F * f; // OVFL could occur when f = (FLT_MAX + D)
13 // reached when -ignore-float-rounding is not used
14 }
15 }

Default:

IEEE 754 rounding under 32 bits and 64 bits.

Example Shell Script Entry:

polyspace-cpp -ignore-float-rounding ...

Green absolute address checks
If you know that the absolute addresses in your code are valid, you can
specify this option to make all ABS_ADDR checks green. Otherwise, the
software generates an orange ABS_ADDR check when an absolute address is
assigned to a pointer. This is because the software has no information about
the absolute address and therefore cannot verify, for example, the address,
availability of memory, and initialization of memory.

The software permits memory access to the absolute address after generating
the orange ABS_ADDR check for the first assignment operation. IDP and
NIV checks for memory access operations after the first assignment operation
are green.

Default:

2-58

Verification Assumptions

Orange ABS_ADDR check generated when an absolute address is assigned
to a pointer.

Example Shell Script Entry

polyspace-cpp -green-absolute-address-checks ...

Ignore overflowing computations on constants
This option specifies that the verification should be permissive with regards
to overflowing computations on constants. Note that it deviates from the
ANSI C standard.

For example,

char x = 0xff;

causes an overflow according to the standard, but if it is analyzed using this
option it becomes effectively the same as

char x = -1;

With this second example, a red overflow will result irrespective of the use
of the option.

char x = (rnd?0xFF:0xFE);

Default:

char x = 0xff; causes an overflow

Example Shell Script Entry:

polyspace-cpp -ignore-constant-overflows ...

Allow negative operand for left shifts
This option allows a shift operation on a negative number.

2-59

2 Option Descriptions for C++ Code

According to the ANSI standard, such a shift operation on a negative number
is illegal – for example,

-2 << 2

With this option in use, Polyspace verification considers the operation to be
valid. In the previous example, the result would be
-2 << 2 = -8

Default:

A shift operation on a negative number causes a red error.

Example Shell Script Entry:

polyspace-cpp -allow-negative-operand-in-shift ...

Detect overflows on
Specifies how verification handles overflowing computations on integers.

Possible settings are:

• none – The verification does not check for integer computation overflows.
If a computation value exceeds the range of the result type, the result is
wrapped, and no OVFL check is reported.

For example, MAX_INT + 1 wraps to MIN_INT.

• signed (default) – Verification checks all signed integer computations
and signed integer to signed integer conversions. The option
-scalar-overflows-behavior specifies whether results for signed integers
are restricted to an acceptable value or wrapped.

For unsigned integer operations, the results are wrapped, and no OVFL
check is reported.

This behavior conforms to the ANSI C (ISO C++) standard.

• signed-and-unsigned – Verification checks all integer computations and
integer conversions, including conversions that cause a change of signs.

2-60

Verification Assumptions

The option -scalar-overflows-behavior specifies whether operation
results are restricted to an acceptable value or wrapped.

This behavior is more strict than the ANSI C (ISO C++) standard requires.

Consider the examples below.

Example 1

Using the signed-and-unsigned option, the following example generates
an error:

unsigned char x;
x = 255;
x = x+1; //overflow due to this option

Using the none option, however, the example does not generate an error.

unsigned char x;
x = 255;
x = x+1; // turns x into 0 (wrap around)

Example 2

Using the signed-and-unsigned option, the following example generates
an error:

unsigned char Y=1;
Y = ~Y; //overflow because of type promotion

In this example:

1 Y is coded as an unsigned char: 000000001

2 Y is promoted to an integer: 00000000 00000000 00000000 00000001

3 The operation "~" is performed, making Y: 11111111 11111111 11111111
11111110

4 The integer is downcast to an unsigned char, causing an overflow.

Example Shell Script Entry:

2-61

2 Option Descriptions for C++ Code

polyspace-cpp -scalar-overflow-checks signed...

Overflows computation mode
Specifies how verification computes the results of overflowing integer
computations or integer conversions.

Possible settings are:

• truncate-on-error (default) — Result of an overflowing operation is
restricted to an acceptable value. If the check is red, verification stops
(in the current code). If the check is orange, verification continues with
restricted value.

• wrap-around— Result of an overflowing operation wraps around the type
range. The check has no impact on values for the rest of the verification.

For example, MAX_INT + 1 wraps to MIN_INT.

Example Shell Script Entry:

polyspace-cpp -scalar-overlows-behavior wrap-around ...

2-62

Precision

Precision

In this section...

“Tuning Precision and Scaling Parameters” on page 2-64

“Precision level” on page 2-65

“Verification level” on page 2-66

“Verification time limit” on page 2-67

2-63

2 Option Descriptions for C++ Code

In this section...

“Sensitivity context” on page 2-68

“Improve precision of interprocedural analysis” on page 2-68

“Inline” on page 2-69

“Depth of analysis inside structures” on page 2-70

Tuning Precision and Scaling Parameters

Precision versus Time of Verification
There is a compromise to be made to balance the time required to obtain
results, and the precision of those results. Consequently, launching Polyspace
verification with the following options will allow the time taken for verification
to be reduced but will compromise the precision of the results. It is suggested
that the parameters should be used in the sequence shown - that is, if the
first suggestion does not increase the speed of verification sufficiently then
introduce the second, and so on.

• switch from -O2 to a lower precision;

• set the -respect-types-in-globals and -respect-types-in-fields options;

• set the -k-limiting option to 2, then 1, or 0;

• stub manually missing functions which write into their arguments.

Precision versus Code Size
Polyspace verification can make approximations when computing the possible
values of the variables, at any point in the program. Such an approximation
will always use a superset of the actual possible values.

For instance, in a relatively small application, Polyspace verification might
retain very detailed information about the data at a particular point in the
code, so that for example the variable VAR can take the values { -2; 1; 2;
10; 15; 16; 17; 25 }. If VAR is used to divide, the division is green (because
0 is not a possible value). If the program being analyzed is large, Polyspace
verification would simplify the internal data representation by using a less

2-64

Precision

precise approximation, such as [-2; 2] U {10} U [15 ; 17] U {25} . Here, the
same division appears as an orange check.

If the complexity of the internal data becomes even greater later in the
verification, Polyspace verification might further simplify the VAR range
to (say) [-2; 20].

This phenomenon leads to the increase or the number of orange warnings
when the size of the program becomes large.

Note The amount of simplification applied to the data representations also
depends on the required precision level (O0, O2), Polyspace verification will
adjust the level of simplification:

• -O0: shorter computation time. You only need to focus on red and gray
checks.

• -O2: less orange warnings.

• -O3: less orange warnings and bigger computation time.

Precision level
This option specifies the precision level to be used. It provides higher
selectivity in exchange for more verification time, therefore making results
review more efficient and hence making bugs in the code easier to isolate. It
does so by specifying the algorithms used to model the program state space
during verification.

Begin with the lowest precision level. Red errors and gray code can then be
addressed before rerunning the Polyspace verification with higher precision
levels.

Benefits:

• A higher precision level contributes to a higher selectivity rate, making
results review more efficient and hence making bugs in the code easier to
isolate.

2-65

2 Option Descriptions for C++ Code

• A higher precision level also means higher verification time

- -O0 corresponds to static interval verification.

- -O1 corresponds to complex polyhedron model of domain values.

- -O2 corresponds to more complex algorithms to closely model domain
values (a mixed approach with integer lattices and complex polyhedrons).

- -O3 is only suitable for code smaller than 1000 lines of code. For such
codes, the resulting selectivity might reach high values such as 98%,
resulting in a very long verification time, such as an hour per 1000 lines
of code.

Default:

-O2

Example Shell Script Entry:

polyspace-cpp -O1 -to pass4 ...

Verification level
This option specifies the verification phase after which the verification will
stop.

Benefits:

This option provides improved selectivity, making results review more
efficient and making bugs in the code easier to isolate.

• A higher integration level contributes to a higher selectivity rate, leading
to "finding more bugs" with the code.

• A higher integration level also means longer verification time

Possible values:

• cpp-compliance or “C++ source compliance checking”

• cpp-normalize or “C++ source normalization” — Not available from the
Polyspace verification environment

2-66

Precision

• cpp-link or “C++ Link” — Not available from the Polyspace verification
environment

• cpp-to-il or “C++ to Intermediate Language” — Not available from the
Polyspace verification environment

• pass0 or “Software Safety Analysis level 0”

• pass1 or "Software Safety Analysis level 1"

• pass2 or "Software Safety Analysis level 2"

• pass3 or "Software Safety Analysis level 3"

• pass4 or "Software Safety Analysis level 4" — Default

• other (stop verification after level 20)

Note If you use -to other, then verification will continue until you stop
it manually (via Polyspace_Install/bin/kill-rte-kernel "Results
folder"/"log file name") or stops until it has reached pass20.

Default:

pass4

Example Shell Script Entry:

polyspace-cpp -to "Software Safety Analysis level 3" ...

polyspace-cpp -to pass0 ...

Verification time limit
Specifies a time limit for the verification (in hours).

If the verification does not complete within the specified time, the verification
fails.

You can specify fractions of an hour in decimal form. For example:

2-67

2 Option Descriptions for C++ Code

• -timeout 5.75 – Five hours, 45 minutes.

• -timeout 3,5 – Three hours, 30 minutes.

Example Shell Script Entry :

polyspace-cpp -timeout 5.75 ...

Sensitivity context
Add call context information for checks contained in given functions. For
example, if one call of the function results in a red check, and another call
results in a green check, the call information and color for both calls is kept
in the function check.

• none — No context sensitivity.

• auto — Automatically select functions for which context sensitivity is
applied. The software selects functions that are:

- Leaves of the call tree (called functions but not calling functions).

- Small. The software uses an internal threshold to determine whether
a function is small.

- Called more than once.

• custom— Apply context sensitivity to functions that you specify.

Example Shell Script Entry:

polyspace-cpp -context-sensitivity -auto ...

Improve precision of interprocedural analysis
This option is used to improve interprocedural verification precision within
a particular pass (see -to pass1, pass2, pass3 or pass4). The propagation of
information within procedures is done earlier than usual when this option is
specified. That results in improved selectivity and a longer verification time.

Consider two verifications, one with this option set to 1 (with), and one
without this option (without)

2-68

Precision

• a level 1 analysis in (with) (pass1) will provide results equivalent to level 1
or 2 in the (without) analysis

• a level 1 analysis in (with) can last x times more than a cumulated level
1+2 analysis from (without). "x" might be exponential.

• the same applies to level 2 in (with) equivalent to level 3 or 4 in (without),
with potentially exponential analysis time for (a)

Gains using the option

• (+) highest selectivity obtained in level 2. no need to wait until level 4

• (-) This parameter increases exponentially the analysis time and might be
even bigger than a cumulated analysis in level 1+2+3+4

• (-) This option can only be used with less than 1000 lines of code

Default:

0

Example Shell Script Entry:

polyspace-cpp -path-sensitivity-delta 1 ...

Inline
A scaling option that creates a clone of a each specified procedure for each
call to it.

Cloned procedures follow a naming convention:

procedure1_pst_inlined_nb

where nb is a unique number giving the total number of inlined procedures.

Inlining allows the number of aliases in a given procedure to be reduced,
and it may also improve precision.

It can also allow you to more easily locate run-time errors that relate the copy
or set of a large structure to a smaller one (NTC, for instance).

2-69

2 Option Descriptions for C++ Code

Restrictions :

• Extensive use of this option may duplicate too much code and may lead to
other scaling problems. Carefully choose procedures to inline.

• This option should be used in response to the inlining hints provided
by the alias verification (the log file can sometimes provide this kind of
information).

• This option should not be used on main, task entry points and critical
section entry points.

• When using this option with a method of a class, all overload of the method
will apply to the inline.

Example Shell Script Entry:

polyspace-cpp inline myclass::myfunc …

Depth of analysis inside structures
This is a scaling option to limit the depth of verification into nested structures
during pointer verification (see Tuning Precision and Scaling Parameters).

This option is only available for C and C++.

Default:

There is no fixed limit.

Example Shell Script Entry:

polyspace-cpp -k-limiting 1 ...

In this example above, verification will be precise to only one level of nesting.

2-70

Post Verification

Post Verification

Command/script to apply after the end of the code
When this option is used, the specified script file or command is executed
once the verification has completed.

The script or command is executed in the results folder of the verification.

Execution occurs after the last part of the verification. The last part of is
determined by the–to option.

Note Depending on the architecture used (notably when performing a server
verification), the script can be executed on the client side or the server side.

Default:

No command.

Example Shell Script Entry – file name:

This example shows how to send an email to tip the client side off that his
verification has been ended. This example supposes that the mailx command
is available on the machine. So the command looks like:

2-71

2 Option Descriptions for C++ Code

polyspace-cpp -post-analysis-command `pwd`/end_email

where end_email is your Perl script.

Note If you are running Polyspace software version 5.1 (r2008a) or later on
a Windows system, you cannot use Cygwin shell scripts. Since Cygwin is
no longer included with Polyspace software, all files must be executable by
Windows. To support scripting, the Polyspace installation now includes Perl:

Polyspace_Install\sys\perl\win32\bin\perl.exe

To run the Perl script provided in the previous example on a Windows
workstation, you must use the option -post-preprocessing-command with
the absolute path to the Perl script, for example:

Polyspace_Install\polyspace\bin\polyspace-cpp.exe
-post-analysis-command
Polyspace_Install\sys\perl\win32\bin\perl.exe
<absolute_path>\end_email

2-72

Reporting

Reporting

In this section...

“Generate report” on page 2-73

“Report template name” on page 2-73

“Output format” on page 2-74

Generate report
Specify whether to create verification report using report generation options

Settings
Default: Off

On
Create report.

Off
No report created.

Report template name
Specify template for generating verification report

2-73

2 Option Descriptions for C++ Code

Settings
Default:

Polyspace_Install\polyspace\toolbox\psrptgen\templates\Developer.rpt

Polyspace_Install is the installation folder your Polyspace software.

Report templates provided with the software include:

• CodingRules.rpt

• Developer.rpt

• Developer_WithGreenChecks.rpt

• DeveloperReview.rpt

• Quality.rpt

• SoftwareQualityObjective.rpt

Tip
Report generated at the end of the verification process, before execution of
any -post-analysis-command

Command-Line Information

Parameter: report-template
Type: string
Value: any valid script file name
Example: polyspace-cpp -report-template filepath\my_template

Output format
Specify output format of report

Settings
Default: RTF

2-74

Reporting

RTF
Generate an .rtf format report.

HTML
Generate an .html format report.

PDF
Generate a .pdf format report.

Word
Generate a .doc format report.

Word is not available on UNIX platforms. RTF is used instead.

XML
Generate and .xml format report.

Note WORD format is not available on UNIX platforms, RTF format is used
instead.

Note You must have Microsoft Office installed to view .RTF format reports
containing graphics, such as the Quality report.

Command-Line Information

Parameter: report-output-format
Type: string
Value: RTF | HTML | PDF | Word | XML
Default: RTF

Shell script example:

polyspace-cpp -report-template my_template report-output-format pdf

2-75

2 Option Descriptions for C++ Code

Batch Options

In this section...

“-server ” on page 2-76

“-sources” on page 2-77

“-sources-list-file” on page 2-78

“-main-generator-files-to-ignore” on page 2-79

“-v | -version” on page 2-79

“-h[elp]” on page 2-80

“-prog” on page 2-80

“-date” on page 2-81

“-author” on page 2-81

“-verif-version” on page 2-82

“-results-dir” on page 2-82

“-I” on page 2-83

“-from” on page 2-83

“-import-comments” on page 2-84

“-tmp-dir-in-results-dir” on page 2-85

“-less-range-information” on page 2-85

“-no-pointer-information” on page 2-86

“-keep-all-files” on page 2-86

“-permissive” on page 2-87

“-Wall” on page 2-88

“-report-output-name” on page 2-88

-server
Using polyspace-remote[-desktop]-[ada] [server [name or IP
address][:<port number>]] allows you to send a verification to a specific or
referenced Polyspace server.

2-76

Batch Options

Note If you do not specify a server name or IP address, the default server
referenced in the Polyspace Preferences is used.

When a server option is associated to the batch launching command, the
name or IP address and a port number need to be specified. If the port number
does not exist, the 12427 value will be used by default.

Note polyspace-remote- accepts all other options.

Option Example Shell Script Entry:

polyspace-remote-desktop-cpp server 192.168.1.124:12400

polyspace-remote-cpp

polyspace-remote-cpp server Bergeron

-sources
-sources "file1[file2[...]]" (Linux and Solaris)

or

-sources "file1[,file2[, ...]]" (Windows, Linux and Solaris)

List of source files to be analyzed, double-quoted and separated by commas.
Note that UNIX standard wild cards are available to specify a number of files.

Note The specified files must have valid extensions. The extensions are not
case-sensitive: *.(c|C|cc|cpp|cPp|CPP|cxx|CxX|CXX)

Defaults:

sources/*.(c|C|cc|cpp|cPp|CPP|cxx|CxX|CXX)

2-77

2 Option Descriptions for C++ Code

Example Shell Script Entry under linux or solaris (files are separated
with a white space):

polyspace-cpp -sources "my_folder/*.cpp"
polyspace-cpp -sources "my_folder/file1.cc other_dir/file2.cpp"

Example Shell Script Entry under windows (files are separated with a
comma):

polyspace-cpp -sources "my_folder/file1.cpp,other_dir/file2.cc"

Using -sources-list-file, each file name need to be given with an absolute
path. Moreover, the syntax of the file is the following:

• One file by line.

• Each file name is given with its absolute path.

Note This option is only available in batch mode.

Example Shell Script Entry for -sources-list-file:

polyspace-cpp -sources-list-file "C:\Analysis\files.txt"
polyspace-cpp -sources-list-file "/home/poly/files.txt"

-sources-list-file
This option is only available in batch mode. The syntax of file_name is the
following:

• One file per line.

• Each file name includes its absolute or relative path.

Example Shell Script Entry for -sources-list-file:

polyspace-cpp -sources-list-file "C:\Analysis\files.txt"

polyspace-cpp -sources-list-file "/home/poly/files.txt"

2-78

Batch Options

-main-generator-files-to-ignore
Specifies source files containing functions not called by the automatically
generated main.

Enter a comma-separated list of files or folders for which defined functions
are not called by the automatically generated main.

If you specify a folder, all files in the folder and its subfolders are ignored by
the main generator.

Use this option for files containing function bodies, so that the verification
looks for the function body only when the function is called by a primary
source file and no body is found.

This option applies only to the automatically generated main. Therefore, you
must also set the option -main-generator for this option to take effect.

Note You can set this option in the Polyspace Verification Environment by
right-clicking a source file in the Project Browser Source tree.

Example Shell Script Entries:

polyspace-cpp -main-generator main-generator-files-to-ignore
"my_folder/file.c"

polyspace-cpp -main-generator main-generator-files-to-ignore
"my_folder/file1.c,my_folder2/file2.c"

polyspace-cpp -main-generator main-generator-files-to-ignore
"my_folder"

-v | -version
Display the Polyspace version number.

Example Shell Script Entry:

polyspace-cpp v

2-79

2 Option Descriptions for C++ Code

It will show a result similar to:

Polyspace r2008a

Copyright (c) 1999-2008 The Mathworks Inc.

-h[elp]
Display in the shell window a simple help in a textual format giving
information on all options.

Example Shell Script Entry:

polyspace-cpp h

-prog
This option specifies the application name, using only the characters which
are valid for Unix file names. This information is labelled in the GUI as the
Project Name.

Note The Project Name (Session Identifier) option no longer appears in the
General section of the Analysis options GUI. You specify the Project name,
Version, and Author parameters in the Polyspace Project – Properties dialog
box. For more information, see “Create Verification Project”.

Default:

Shell Script: polyspace

GUI: New_Project

Example shell script entry:

polyspace-cpp -prog myApp ...

2-80

Batch Options

-date
This option specifies a date stamp for the verification in dd/mm/yyyy format.
This information is labelled in the GUI as the Date. The GUI also allows
alternative default date formats, via the Edit/Preferences window.

Note The Date option no longer appears in the General section of the
Analysis options GUI. The date is now set automatically in the GUI.

Default:

Day of launching the verification

Example shell script entry:

polyspace-cpp -date "02/01/2002"...

-author
This option is used to specify the name of the author of the verification.

Note The Author option no longer appears in the General section of the
Analysis options GUI. You specify the Project name, Version, and Author
parameters in the Polyspace Project – Properties dialog box. For more
information, see “Create Verification Project”.

Default:

the name of the author is the result of the whoami command

Example shell script entry:

polyspace-cpp -author "John Tester"

2-81

2 Option Descriptions for C++ Code

-verif-version
Specifies the version identifier of the verification. This option can be used to
identify different verifications. This information is identified in the GUI as
the Version.

Note The Version option no longer appears in the General section of the
Analysis options GUI. You specify the Project name, Version, and Author
parameters in the Polyspace Project – Properties dialog box. For more
information, see “Create Verification Project”.

Default:

1.0.

Example shell script entry:

polyspace-cpp -verif-version 1.3 ...

-results-dir
This option specifies the folder in which Polyspace will write the results of
the verification. Note that although relative directories may be specified,
particular care should be taken with their use especially where the tool is to
be launched remotely over a network, and/or where a project configuration file
is to be copied using the Save as option.

Default:

Shell Script: The folder in which tool is launched.

From Graphical User Interface: C:\Polyspace_Results

Example Shell Script Entry:

polyspace-cpp -results-dir RESULTS ...

export RESULTS=results_`date +%d%B_%HH%M_%A`

2-82

Batch Options

polyspace-cpp -results-dir `pwd`/$RESULTS ...

-I
Specify the name of a folder that must be included when compiling C++
sources. You can specify only one folder for each -I instance. However, you
can specify this option multiple times.

Polyspace software implicitly includes the ./sources folder (if it exists) after
any include folders that you specify.

Example Shell Script Entry-1:

polyspace-cpp -I /com1/inc -I /com1/sys/inc

is equivalent to

polyspace-cpp -I /com1/inc -I /com1/sys/inc -I ./sources

Example Shell Script Entry-2:

polyspace-cpp

is equivalent to

polyspace-cpp -I ./sources

-from
This option specifies the verification phase to start from. It can only be used
on an existing verification, possibly to elaborate on the results that you have
already obtained.

For example, if a verification has been completed -to pass1, verification can
be restarted -from pass1 and hence save on verification time.

The option is usually used in a verification after one run with the -to option,
although it can also be used to recover after power failure.

2-83

2 Option Descriptions for C++ Code

Possible values are as described in the -to verification-phase section,
with the addition of the scratch option.

Note

• This option can only be used for client verifications. All server verifications
start from scratch.

• Unless the scratch option is used, this option can be used only if the
previous verification was launched using the option -keep-all-files.

• This option cannot be used if you modify the source code between
verifications.

Default :

From scratch

Example Shell Script Entry :

polyspace-cpp -from c-to-il ...

-import-comments
Use option to automatically import coding rule and run-time check comments
and justifications from specified folder at the end of verification.

Default:

Disabled

Example Shell Script Entry:

polyspace-c -version 1.3 -import-comments C:\PolyspaceResults\1.2

2-84

Batch Options

-tmp-dir-in-results-dir
If you specify the new option -tmp-dir-in-results-dir, Polyspace does not
use the standard /tmp or C:\Temp folder to store temporary files. Instead,
Polyspace uses a subfolder of the results folder. This action may affect
processing speed if the results folder is mounted on a network drive. Use
this option only when the temporary folder partition is not large enough and
troubleshooting is required.

Default:

Disabled

Example Shell Script Entry:

polyspace-cpp -tmp-dir-in-results-dir -results-dir
C:\Polyspace\Results

-less-range-information
Limits the amount of range information displayed in verification results.

When you select this option, the software provides range information on
assignments, but not on reads and operators.

In addition, selecting this option enables the no-pointer-information
option. See “-no-pointer-information” on page 2-86.

Computing range information for reads and operators may take a long time,
and can reduce the precision of the verification (causing more orange checks).
Selecting this option can reduce verification time significantly, and improve
the precision of the verification. Consider the following example:

x = y + z;

If you do not select this option (the default), the software displays range
information when you place the cursor over x, y, z, or +. However, if you
select this option, the software displays range information only when you
place the cursor over x.

Default:

2-85

2 Option Descriptions for C++ Code

Disabled.

Example Shell Script Entry :

polyspace-cpp -less-range-information

-no-pointer-information
Stops the display of pointer information in verification results.

When you select this option, the software does not provide pointer information
through tooltips. As computing pointer information may take a long time,
selecting this option can significantly reduce verification time.

Consider the following example:

x = *p;

If you do not select this option (the default), the software displays pointer
information when you place the cursor on p or *. If you select this option, the
software does not display pointer information.

Default:

Disabled.

Example Shell Script Entry :

polyspace-cpp -no-pointer-information

-keep-all-files
“-keep-all-files” on page 2-86

Specify whether to retain all intermediate results and associated working files.

2-86

Batch Options

Settings
Default: Off

On
Retain all intermediate results and associated working files. You can
restart a verification from the end of any complete pass if the source
code remains unchanged.

Off
Erase all intermediate results and associated working files. If you want
to restart a verification, do so from the beginning.

Tips

• When you select this option you can restart Polyspace verification from
the end of any complete pass (provided the source code remains entirely
unchanged). If this option is not used, you must restart the verification
from scratch.

• This option is applicable only to client verifications. Intermediate results
are always removed before results are downloaded from the Polyspace
server.

Command-Line Information

Parameter: -keep-all-files
Example: polyspace-cpp -keep-all-files

-permissive
This option selects the permissive verification mode, which produces results
quickly but may not detect all run-time errors.

The permissive mode is equivalent to using the following options:

• -ignore-constant-overflows

• -allow-negative-operand-in-shift

Example Shell Script Entry

2-87

2 Option Descriptions for C++ Code

polyspace-cpp -permissive ...

-Wall
Force the C++ compliance phase to print all warnings.

Note If you specify -jsf-coding-rules, this option is disabled.

Default:

By default, only warnings about compliance across different files are printed.

Example Shell Script Entry:

polyspace-cpp -Wall ..

-report-output-name
Specify name of verification report file

Settings
Default: Prog_TemplateName.Format where:

• Prog is the argument of the prog option

• TemplateName is the name of the report template specified by the
report-template option

• Format is the file extension for the format specified by the
report-output-format option.

Command-Line Information

Parameter: report-output-name
Type: string
Value: any valid value
Default: Prog_TemplateName.Format

2-88

Batch Options

Shell script example:

polyspace-cpp -report-template my_template report-output-name Airbag_V3.rtf

2-89

2 Option Descriptions for C++ Code

Deprecated Options

In this section...

“-continue-with-existing-host (Deprecated)” on page 2-90

“-allow-unsupported-linux (Deprecated)” on page 2-90

“-quick (Deprecated)” on page 2-91

-continue-with-existing-host (Deprecated)

Note This option is deprecated in R2010a and later releases, and no
longer exists in the user interface. Polyspace verification now continues
regardless of the system configuration. The software still checks the hardware
configuration, and issues a warning if it does not satisfy requirements.

When this option is set, the verification will continue even if the system is
under specified or its configuration is not as preferred by Polyspace software.
Verified system parameters include the amount of RAM, the amount of swap
space, and the ratio of RAM to swap.

-allow-unsupported-linux (Deprecated)

Note This option is deprecated in R2010a and later releases, and no longer
exists in the user interface. Polyspace verification now continues regardless of
the Linux distribution. If the Linux distribution is not officially supported,
the software displays a warning in the log file.

This option specifies that Polyspace verification will be launched on an
unsupported OS Linux distribution.

Polyspace software supports the Linux distributions listed in “Hardware
and Software Requirements”.

2-90

Deprecated Options

-quick (Deprecated)

Note This option is deprecated in R2009a and later releases.

quick mode is obsolete and has been replaced with verification PASS0.
PASS0 takes somewhat longer to run, but the results are more complete.
The limitations of quick mode, (no NTL or NTC checks, no float checks,
no variable dictionary) no longer apply. Unlike quick mode, PASS0 also
provides full navigation in the results.

This option is used to select a very fast mode for Polyspace .

Benefits
This option allows results to be generated very quickly. These are suitable
for initial verification of red and gray errors only, as orange checks are too
plentiful to be relevant using this option.

Limitations

• No NTL or NTC are displayed (non termination of loop/call)

• The variable dictionary is not available

• No check is performed on floats

• The call tree is available but navigation is not possible

• Orange checks are too plentiful to be relevant

2-91

2 Option Descriptions for C++ Code

2-92

3

Check Descriptions for C
Code

• “UNR – Unreachable Code” on page 3-3

• “OBAI – Out of Bounds Array Index” on page 3-5

• “ZDV – Division by Zero” on page 3-7

• “NIV (NIVL) – Non-Initialized Variable” on page 3-8

• “OVFL – Scalar and Float Overflow” on page 3-9

• “IRV – Initialized Return Value” on page 3-14

• “SHF – Shift Operations” on page 3-15

• “IDP – Illegal Dereferenced Pointer” on page 3-17

• “COR – Correctness Condition” on page 3-33

• “NIP – Non-Initialized Pointer” on page 3-40

• “ASRT – User Assertion” on page 3-41

• “NTC – Non-Termination of Call” on page 3-43

• “K_NTC – Known Non-Termination of Call” on page 3-50

• “NTL – Non-Termination of Loop” on page 3-51

• “STD_LIB – Standard Library Function Call” on page 3-57

• “ABS_ADDR – Absolute Address” on page 3-58

• “IPT – Inspection Points” on page 3-60

• “POW (Deprecated)” on page 3-62

• “UNFL (Deprecated)” on page 3-63

3 Check Descriptions for C Code

• “UOVFL (Deprecated)” on page 3-64

3-2

UNR – Unreachable Code

UNR – Unreachable Code
This is a check to establish whether different code snippets (assignments,
returns, conditional branches and function calls) are dead, such that they
can never be accessed during the normal execution of the software. Dead, or
Unreachable, code is represented by means of a gray coding on every check,
with supplementary UNR checks also being added.

Consider the following example.

1
2 #define True 1
3 #define False 0
4
5 typedef enum {
6 Intermediate, End, Wait, Init
7 } enumState;
8
9 // pure stub
10 int intermediate_state(int);
11 int random_int(void);
12
13 int State (enumState stateval)
14 {
15 volatile int random;
16 int i;
17 if (stateval == Init) return False;
18 return True;
19 }
20
21 int main (void)
22 {
23 int i, res_end;
24 enumState inter;
25
26 res_end = State(Init);
27 if (res_end == False) {
28 res_end = State(End);
29 inter = (enumState)intermediate_state(0);
30 if (res_end || inter == Wait) { // UNR code on inter

3-3

3 Check Descriptions for C Code

== Wait
31 inter = End;
32 }
33 // use of I not initialized
34 if (random_int()) {
35 inter = (enumState)intermediate_state(i); // NIV ERROR
36 if (inter == Intermediate) { // UNR code because
of NIV ERROR
37 inter = End;
38 }
39 }
40 } else {
41 i = 1; // UNR code
42 inter = (enumState)intermediate_state(i); // UNR code
43 }
44 if (res_end) { // UNR code always reached, but no else
45 inter = End;
46 }
47
48 return res_end;
49 }
50

The example illustrates three possible reasons why code might be
unreachable, and hence be colored gray:

• At line 30, the first part of a two part test is always true. The other part is
never evaluated, following the standard definition of logical operator "||".

• The piece of code after a red error is never evaluated by Polyspace software.
The call to the function on line 35 and the line following it are considered
to be dead code. Correcting the red error and relaunching would allow
the color to be revised.

• At line 27, the test is always true (if { part), and the first branch is
always executed. Consequently there is dead code in the other branch (that
is, in the else { part at lines 41 to 42).

In addition, at line 44, there is an if statement without an else clause. In
this instance, because there is no else clause and res_end is always true, the
if keyword is colored gray.

3-4

OBAI – Out of Bounds Array Index

OBAI – Out of Bounds Array Index
This is a check to establish whether an index accessing an array is compatible
with the length of that array.

The message associated with an OBAI check provides the range of the array.
For example, Array index out of bounds [0..1023].

Consider the following example.

1
2 #define SIZE_TAB 1024
3 int tab[SIZE_TAB];
4
5 void main(void)
6 {
7 int index;
8
9 for (index = 0; index < SIZE_TAB ; index++)
10 {
11 tab[index] = 0;
12 }
13 tab[index] = 1;
14 // Red OBAI: Array index out of bounds [0..1023]
15 }

Just after the loop, index equals SIZE_TAB. Therefore, the statement
tab[index] = 1 overwrites the memory cell just after the last array element.

An OBAI check can also be localized on a + operator, which the following
example illustrates.

1 int tab[10];
2
3 void main(void)
4 {
5 int index;
6 for (index = 0; index < 10 ; index++)
7 *(tab + index) = 0;
8

3-5

3 Check Descriptions for C Code

9 *(tab + index) = 1; // OBAI ERROR: Array index out of bounds
10 }

3-6

ZDV – Division by Zero

ZDV – Division by Zero
This is a check to establish whether the right operand of a division (that is,
the denominator) is different from 0[.0]. Consider the following example.

1 extern int random_value(void);
2
3 void zdvs(int p)
4 {
5 int i, j = 1;
6 i = 1024 / (j-p); // ZDV ERROR: Scalar Division by Zero
7 }
8
9 void zdvf(float p)
10 {
11 float i,j = 1.0;
12 i = 1024.0 / (j-p); // ZDV ERROR: float Division by Zero
13 }
14
15 int main(void)
16 {
17 volatile int random;
18 if (random_value()) zdvs(1);
// NTC ERROR: because of ZDV ERROR
in ZDVS.
19 if (random_value()) zdvf(1.0);
// NTC ERROR: because of ZDV ERROR
in ZDVF.
20 }

3-7

3 Check Descriptions for C Code

NIV (NIVL) – Non-Initialized Variable
This is a check to establish whether a variable is initialized before being
read. Consider the following example.

1
2 extern int random_int(void);
3
4 void main(void)
5 {
6 int x,i;
7 double twentyFloat[20];
8 int y = 0;
9
10 if (random_int()) {
11 y += x; // NIV ERROR: Non
Initialized Variable (type: int 32)
12 }
13 if (random_int()) {
14 for (i = 1; i < 20; i++) {
15 if (i % 2) twentyFloat[i] = 0.0;
16 }
17 twentyFloat[2] = twentyFloat[4] + 5.0; // NIV Warning.
Only odd indexes are initialized.
18 }
19 }

The result of the addition is unknown at line 11 because x is not initialized
(UNR unreachable code on "+" operator).

In addition, line 17 shows how Polyspace software prompts the user to
investigate further (by means of an orange check) when all cells have not
been initialized.

Note Associated to each message which concerns a NIV check, Polyspace
software gives the type of the variable like the following examples: (type:
volatile int32), (type: int 16), (type: unsigned int 8), etc.

3-8

OVFL – Scalar and Float Overflow

OVFL – Scalar and Float Overflow

In this section...

“Scalar Overflow” on page 3-9

“Float Overflow” on page 3-10

“Constant Overflow” on page 3-12

Scalar Overflow
This check determines whether arithmetic expressions cause a scalar
overflow.

C Example
1 #include <float.h>
2 extern int random_int(void);
3
4 void main(void)
5 {
6 int i = 1;
7
8 i = i << 30; // i = 2**30
9 if (random_int())
10 i = 2 * (i - 1) + 2;
11 // OVFL ERROR: 2**31 is an overflow value for int32
12 }

Explanation: On a 32 bit architecture platform, the maximum integer
value is 231-1. In line 10, the arithmetic expression adds (231-2) and 2. This
addition results in i = 231, which will cause an overflow.

Left Shift Overflow on Signed Variables
Overflows can be also be encountered in the case of left shifts on signed
variables. In the following example, the higher order bit of 0x41021011
(hexadecimal value of 1090654225) has been lost, highlighting an overflow
(integer promotion).

1

3-9

3 Check Descriptions for C Code

2 void main(void)
3 {
4 int i;
5
6 i = 1090654225 << 1; // OVFL ERROR: on left shift range
7 }

Float Overflow
This check determines whether arithmetic expressions cause floating-point
overflow or underflow.

C Example

1 #include <float.h>
2 extern int random_int(void);
3
4 void main(void)
5 {
6 float fvalue = FLT_MAX;
7
8 if (random_int())
9 fvalue = 2 * fvalue + 1.0;
10 // OVFL ERROR: float variable is overflow
11 }

Explanation: If fvalue represents the biggest float on a 32 bit machine, its
double cannot be represented with same data type. Thus, it raises an overflow
check on the multiplication in line 9.

Overflow on the Biggest Float
There are occasions when it is important to understand when overflow may
occur on a float value approaching its maximum value. Consider the following
example.

void main(void)
{

float x, y;
x = 3.40282347e+38f; // is green
y = (float) 3.40282347e+38; // OVFL red

3-10

OVFL – Scalar and Float Overflow

}

There is a red error on the second assignment, but not the first. This is
because rounding is not the same when casting a constant to a float, or a
constant to a double:

• floats are rounded to the nearest lower value.

• doubles are rounded to the nearest higher value.

Since, the real "biggest" value for a float (MAXFLOAT) is:
340282346638528859811704183484516925440.0,

• 3.40282347e+38 is strictly bigger than
340282346638528859811704183484516925440.

• In the case of the first assignment, 3.40282347e+38f is directly cast into a
float, which is less than MAXFLOAT.

• In the case of the second assignment, the value is first cast to a double
by your compiler, (using a temporary variable) then into a float because
of the case (another temporary variable). The float value is greater than
MAXFLOAT, so the check is red.

The solution to this problem is to use the "f" suffix to specify the variable
directly as a float, rather than casting.

Float Underflow Versus Values Near Zero
The definition of the word "underflow" differs between the ANSI standard
and the ANSI/IEEE 754-1985 standard. According to the former definition,
underflow occurs when a number is sufficiently negative for its type not to
be capable of representing it. According to the latter, underflow describes
the erroneous representation of a value close to zero due to the limits of its
representation.

Polyspace verifications apply the former definition. The latter definition
does not impose the raising of an exception as a result of an underflow. By
default, processors supporting this standard permit the deactivation of such
exceptions.

Consider the following example.

3-11

3 Check Descriptions for C Code

2 #define FLT_MAX 3.40282347e+38F // maximum representable
float found in <float.h>
3 #define FLT_MIN 1.17549435e-38F // minimum normalised
float found in <float.h>
4
5 void main(void)
6 {
7 float zer_float = FLT_MIN;
8 float min_float = -(FLT_MAX);
9
10 zer_float = zer_float * zer_float; // No check overflow
near zero
11 min_float = min_float * min_float; // OVFL ERROR:
underflow checked by verifier
12
13 }

Constant Overflow
Consider the following example, which would cause an overflow.

int x = 0xFFFF; /* OVFL */

The table that follows shows three types of constants with corresponding
lists of data types. The data type given to a constant is the first data type
from the corresponding list that can accommodate the constant value. (See
“Predefined Target Processor Specifications” for information about the size
of a type depending on the target.)

Decimal int, long, unsigned long

Hexadecimal int, unsigned int, long, unsigned
long

Float double

For example, (assuming 16-bit target) the data types for the following values
are:

3-12

OVFL – Scalar and Float Overflow

5.8 double

6 int

65536 long

0x6 int

0xFFFF unsigned int

5.8F float

65536U unsigned int

The option -ignore-constant-overflows allows you to bypass this limitation
and consider the line

int x = 0xFFFF; /* OVFL */

as

int x = -1;

instead of 65535, which does not fit into a 16-bit integer (–32768 to 32767).

3-13

3 Check Descriptions for C Code

IRV – Initialized Return Value
This is a check to establish whether a function returns an initialized value.
Consider the following example.

1
2 extern int random_int(void);
3
4 int reply(int msg)
5 {
6 int rep = 0;
7 if (msg > 0) return rep;
8 }
9
10 void main(void)
11 {
12 int ans;
13
14 if (random_int())
15 ans = reply(1); // IRV verified: function returns an
initialised value
16 else if (random_int())
17 ans = reply(0); // IRV ERROR: function does not return an
initialised value
18 else
19 reply(0); // No IRV checks because the return value
is not used
20
21 }
22
23

Variables are often initialized using the return value of functions. However,
in the above example the return value is not initialized for all input parameter
values. In this case, the target variable will not be always be properly
initialized with a valid return value.

3-14

SHF – Shift Operations

SHF – Shift Operations

In this section...

“Shift Amount in 0..31 (0..63): SHF” on page 3-15

“Left Operand of Left Shift is Negative: SHF” on page 3-15

Shift Amount in 0..31 (0..63): SHF
This is a check to establish whether a shift (left or right) is bigger than the
size of the integral type operated upon (int or long int). The range of allowed
shift depends on the target processor: 16 bits on c-167, 32 bits on i386 for int,
etc. Consider the following example.

1 extern int random_value(void);
2
3 void main(void)
4 {
5 volatile int x;
6 int k, l = 1024; // 32 bits on i386
7 unsigned int v, u = 1024;
8
9 if (x) k = l << 16;
10 if (x) k = l >> 16;
11
12 if (x) k = l << 32; // SHF ERROR
13 if (x) k = l >> 32; // SHF ERROR
14
15 if (x) v = u >> 32; // SHF ERROR
16 if (x) k = u << 32; // SHF ERROR
17
18 }

In this example, it is shown that the shift amount is greater than the integer
size.

Left Operand of Left Shift is Negative: SHF
This is a check to establish whether the operand of a left shift is a signed
number. Consider the following example.

3-15

3 Check Descriptions for C Code

1
2
3 void main(void)
4 {
5 int x = -200;
6 int y;
7
8 y = x << 1; // SHF ERROR: left operand must be positive
9
10 }

As an aside, note that the “Allow negative operand for left shifts” on page
1-59 option used at launching time instructs Polyspace software to permit
explicitly signed numbers on shift operations. Using the option in the example
above would see the red check at line 8 transformed in a green one. Similarly,
if the verification had included the expression -2 << 2 at line 9, then that line
would have been given a green check and y would assume a values of -8.

3-16

IDP – Illegal Dereferenced Pointer

IDP – Illegal Dereferenced Pointer

In this section...

“Illegal Pointer Access to Variable or Structure Field: IDP” on page 3-17

“Pointer Within Bounds: IDP” on page 3-18

“Understanding Addressing” on page 3-19

“Understanding Pointers” on page 3-24

Illegal Pointer Access to Variable or Structure Field:
IDP
Illegal Pointer Access to Variable or Structure Field

This is a check to establish whether in the dereferencing of an expression of
the form ptr+i, the variable/structure field initially pointed to by ptr is still
the one accessed. See ANSI C standard ISO/IEC 9899 section 6.3.6.

Consider the following example.

1 int a;
2
3 struct {
4 int f1;
5 int f2;
6 int f3;
7 } S;
8
9 void main(void)
10 {
11 volatile int x;
12
13 if (x)
14 *(&a+1) = 2;
15 // IDP ERROR: &a +1 doesn't point to a any longer
16 if (x)
17 *(&S.f1 +1) = 2;
18 // IDP ERROR: you are not allowed to access f2 like this

3-17

3 Check Descriptions for C Code

19 }

According to the ANSI C standard, it is not permissible to access a variable
(or a structure field) from a pointer to another variable. That is, ptr+i may
only be dereferenced if ptr+i is the address of a subpart of the object pointed
to by ptr (such as an element of the array pointed to by ptr, or a field of the
structure pointed to by ptr).

For instance, the following code is correct because the length of the entity
pointed to by ptr_s reflects the full structure length of My_struct (at line 11):

1 typedef struct {
2 int f1;
3 int f2;
4 int f3;
5 } My_Struct;
6
7 My_Struct s = {1,2,3};
8
9 int main(void)
10 {
11 My_Struct *ptr_s = &s;
12
13 // change to f2 field
14 *((int *)&s +1) = 2; // Correct evaluation
15
16 return 0;
17 }

Pointer Within Bounds: IDP
Check to establish whether a reference refers to a valid object (whether a
dereference pointer is still within the bounds of the object it intended to
point to).

Consider the following example.

1
2 #define TAILLE_TAB 1024
3 int tab[TAILLE_TAB];
4 int *p = tab;

3-18

IDP – Illegal Dereferenced Pointer

5
6 void main(void)
7 {
8
9 int index;
10
11 for (index = 0; index < TAILLE_TAB ; index++, p++)
12 {
13 *p = 0;
14 }
15
16 *p = 1; // IDP ERROR: reference refers to an invalid object
17 }

In the example, the pointer p is initialized to point to the first element of
the tab array at line 4. When the loop is exited, p points beyond the last
element of the array.

Thus line 16 overwrites memory illegally.

Understanding Addressing

• “I Systematically Have an Orange Out of Bounds Access On My Hardware
Register” on page 3-19

• “The NULL Pointer Case” on page 3-21

• “Comparing Address” on page 3-23

I Systematically Have an Orange Out of Bounds Access On
My Hardware Register
Many code verifications exhibit orange out of bound checks with respect to
accesses to absolute addresses and/or hardware registers.

(Also refer to the discussion on Absolute Addressing)

Here is an example of what such code might look like:

3-19

3 Check Descriptions for C Code

#define X (* ((int *)0x20000))
X = 100;
y = 1 / X; // ZDV check is orange because

// X ~ [-2^31, 2^31-1] permanently.
// The pointer out of bounds check is orange because 0x20000
// may address anything of any length
// NIV check is orange on X as a consequence

3 void main (void)
4 {
5 int y;
6
7 X = 100;
8 y = 1 / X;
9
10 }

int *p = (int *)0x20000;
*p = 100;
y = 1 / *p; // ZDV check is orange because

// *p ~ [-2^31, 2^31-1] permanently
// The pointer out of bounds is orange because 0x20000
// may address anything of any length
// NIV check on *p is orange as a consequence

This can be addressed by defining registers as regular variables:

3-20

IDP – Illegal Dereferenced Pointer

Replace By

#define X int X;

int *p; int _p;#define p (&_p)

Note Check that the chosen
variable name (p in this example)
doesn’t already exist

int *p; volatile int _p;int *p = &_p;

See “Volatile Variables” for a discussion of an approach which will help avoid
the orange check on the pointer dereference, but retains the representation of
a “full range” variable.

The NULL Pointer Case
Consider the NULL address:

#define NULL ((void *)0)

• It is illegal to dereference this NULL address;

• 0 is not treated as an absolute address.

Therefore, the following code produces a red (IDP) check:

*NULL = 100; // IDP: pointer is outside its bounds

3-21

3 Check Descriptions for C Code

Assuming these declarations:-

int *p = 0x5;
volatile int y;

and these definitions:-

#define NULL ((void *) 0)
#define RAM_MAX ((int *)0xffffffff)

consider the code snippets below.

While (p != (void *)0x1)
p--; // terminates

0x1 is an absolute address, it can be reached and the loop terminates

for (p = NULL; p <= RAM_MAX; p++)
{
*p = 0; // Red IDP: pointer is outside its bounds

}

At the first iteration of the loop p is a NULL pointer. Dereferencing a
NULL pointer is forbidden.

While (p != NULL)
{
p--;
*p = 0; // Orange IDP: pointer may be outside its bounds

}

When p reaches the address 0x0, there is an attempt to considered it as
an absolute address

In effect, it is an attempt to dereference a NULL pointer - which is forbidden.

3-22

IDP – Illegal Dereferenced Pointer

Note In this case, the check is orange because the execution of the code
here is OK (green) until 0x0 is reached (red)

The best way to address this issue depends on the purpose of the function.

• Thanks to the default behavior of Polyspace software, it is easy to
automatically stub a function whose purpose is to copy data from/to RAM
or to compute a checksum on RAM.

• If a function is supposed to copy calibration data, it should also be stubbed
automatically.

• If the purpose of a function is to map EEPROM data to global variables,
then a manually written stub is required to assign initial values to the
global variables.

Comparing Address
Polyspace software only deals with the information referred to by a pointer,
and not the physical location of a variable. Consequently it does not compare
addresses of variables, and makes no assumption regarding where they are
located in memory.

Consider the following two examples of Polyspace verification
behavior:

int a,b;
if (&a > &b) // condition can be true and/or false
{ } // both branches are reachable
else
{ } // both branches are reachable

and

int x,z;
void main(void)
{ int i;
x = 12;

3-23

3 Check Descriptions for C Code

for (i=1; i<= 0xffffffff; i++)
{
*((int *)i) = 0;

}
z = 1 / x; // ZDV green check because Polyspace doesn't consider

// any relationship between x and its address
}

“x” is aliased by no other variable. No pointer points to “x” in this example,
so as far as the Polyspace verification is concerned, “x” remains constantly
equal to 12.

Understanding Pointers

• “Pointers and Verification” on page 3-24

• “Address Alignment: the bitfield Example” on page 3-25

• “How Does malloc Work for Polyspace Verification?” on page 3-26

• “Data Mapping into a Structure ” on page 3-26

• “Mapping of a small structure into a bigger one” on page 3-28

• “Partially allocated pointer (-size-in-bytes)” on page 3-28

• “Pointer to a structure field” on page 3-30

• “I have a red when reading a field of one structure” on page 3-31

Pointers and Verification
Polyspace software does not analyze anything which would require the
physical address of a variable to be taken into account.

• Consider two variables x and y. Polyspace verification will not make a
meaningful comparison of “&x” (address of x) and “&y”

• So, the Boolean (&x < &y) can be true or false as far as Polyspace
verification is concerned.

However, Polyspace verification does keep track of the pointers that point to
a particular variable.

3-24

IDP – Illegal Dereferenced Pointer

• So, if ptr points to X, *ptr and X will be synonyms.

Address Alignment: the bitfield Example
Structure size depends on bit alignment.

Consider the following example, where an attempt is made to map a character
to a bitfield.

struct reg {
unsigned int a: 5;
unsigned int b: 3;

};
int main()
{
volatile unsigned char c;
struct reg *r;
r = (struct reg *) &c;
if (r-> a == 10)
return 1;

return 0;
}

Consider a 32 bit target architecture (so int are 32 bits, i.e. 4 bytes). The size
of a bit field is the size of the type of its elements. In the example above, the
elements in the bit field are unsigned int, hence the size is 4 bytes. Since this
is greater than 1, the structure reg cannot be contained in the char c.

This can be solved by using the unsigned char type for the elements in the bit
field. The size of the bit field is then 1 byte and there is therefore no red error.

struct reg {
unsigned char a: 5;
unsigned char b: 3;

};
int main()
{
volatile unsigned char c;
struct reg *r;
r = (struct reg *) &c;
if (r-> a == 10)

3-25

3 Check Descriptions for C Code

return 1;
return 0;

}

How Does malloc Work for Polyspace Verification?
Polyspace verification models malloc, such that both the possible return values
of a null pointer and the requested amount of memory are taken into account.

Consider the following example.

void main(void)
{
char *p;
char *q;
p = malloc(120);
q = p;
*q = 'a'; // results in an orange dereference check

}

This code will avoid the orange dereference:

void main(void)
{
char *p;
char *q;
p = malloc(120);
q = p;
if (p!= NULL)
*q = 'a'; // results in a green dereference check

}

Data Mapping into a Structure
It often happens that structured data are read as a char array. Before
manipulating them it might be desirable to map such data into a structure
that reflects their organization. In the following example an IDP warning
(orange check) at line 22 suggests that the correctness of the code needs to
be confirmed.

1

3-26

IDP – Illegal Dereferenced Pointer

2
3 typedef struct
4 {
5 unsigned int MsgId;
6 union {
7 float fltv;
8 unsigned int intv;
9 } Msgbody;
10 } Message;
11
12 int random_int(void);
13 Message *get_msg(void);
14 void wait_idl(void);
15
16 void treatment_msg(char *msg)
17 {
18 Message *ptrMsg;
19
20 ptrMsg = (Message *)msg;
21 if (ptrMsg != NULL) {
22 if (ptrMsg->MsgId) { // IDP Warning: reference may not
refer to a valid object
23 // ...
24 }
25 }
26 }
27
28 int main (void) {
29
30 Message *msg;
31
32 while(random_int()) {
33 msg = get_msg();
34 if (msg) treatment_msg((char *)msg);
35 wait_idl();
36 }
37 return 0;
38 }

3-27

3 Check Descriptions for C Code

Mapping of a small structure into a bigger one
For example, suppose that p is a pointer to an object of type t_struct and it is
initialized to point to an object of type t_struct_bis.

Now suppose that the size of t_struct_bis is less than the size of t_struct.
Under these circumstances, it would be illegal to dereference p because it
would be possible to access memory outside of t_struct_bis.

Consider the following example.

1 #include <malloc.h>
2
3 typedef struct {
4 int a;
5 union {
6 char c;
7 float f;
8 } b;
9 } t_struct;
10
11 void main(void)
12 {
13 t_struct *p;
14
15 // optimize memory usage
16 p = (t_struct *)malloc(sizeof(int)+sizeof(char));
17
18 p->a = 1; // IDP ERROR: not allowed to deference p
19
20 }

Partially allocated pointer (-size-in-bytes)
According to the ANSI standard, the whole of a structure must be populated
for that structure to be valid. In this case, the pointer is said to be fully
allocated. A pointer is said to be partly allocated when only the first part of a
structure is populated. In some development environments, that approach is
tolerated despite the ANSI stance.

3-28

IDP – Illegal Dereferenced Pointer

By default, Polyspace verification strictly conforms to the standard and
checks for adherence to it. A more tolerant approach can be specified by using
the -size-in-bytes option. So, depending on the -size-in-bytes option, when a
partially allocated pointer is encountered during a Polyspace verification, the
first elements of the allocated object may or may not be considered as valid.

First consider the following example. (A second example follows it to illustrate
how this might apply to pointer arithmetic within a structure)

1 typedef struct _little { int a; int b; } LITTLE;
2 typedef struct _big { int a; int b; int c; } BIG;
3
4 int main(void)
5 {
6 BIG *p = malloc(sizeof(LITTLE));
7 volatile int y;

With -size-in-bytes option

9 if (p==((void *)0)) return 0;
10 if(y) { p->a = 0; } // green
11 if(y) { p->b = 0; } // green
12 if(y) { p->c = 0; } // red
}

Default launching option

9 if(y) { p->a = 0 ; } // red
10 if(y) { p->b = 0 ; } // red
11 if(y) { p->c = 0 ; } // red
12
13 if (p==((void *)0))
14 return 0;
15 else
16 return 1; // dead code
17 return 1;
18 }

With the standard launching option, a pointer that has not been allocated to a
complete structure is considered invalid, or NULL (as shown in the dead code).

3-29

3 Check Descriptions for C Code

Pointer to a structure field
According to the ANSI C standard, pointer arithmetic is to be independent
of the size of the object (structure or array) to which the pointer points. By
default, Polyspace verification strictly conforms to the standard and checks
for adherence to it.

In some development environments an approach that does not recognize
that requirement is tolerated, despite the ANSI stance. Under those
circumstances, results are likely to include red pointer out of bounds checks
unexpectedly.

A more tolerant approach can be specified at launch time. Consider the
following examples.

char *p; // the size of the object pointed to is unknown,
// but arithmetic on this pointer is well defined.
// p = p + 5; will increment the location pointed to by
5 bytes (if the
size of a char is 1 byte)
int x; // assuming that an int is 4 bytes
p = &x; *p = 0; // the first byte of x
p++; *p = 0; // the second byte of x
p++; *p = 0; // the third byte of x
p++; *p = 0; // the fourth byte of x
p++; *p = 0; // an out of bound access

For structures, the same behavior can be applied.

struct { int a; int b; } x;
char *p = &x.a; // the pointed object is not the structure
but the field
*p = 0; // it is the first byte of x.a
p++; *p = 0; // it is the second byte of x.a
p++; *p = 0; // it is the third byte of x.a
p++; *p = 0; // it is the fourth byte of x.a
p++; *p = 0; // here is an out of bound access because
we are out of the field

If you wish to tolerate an approach which allows a pointer to go from one field
to another, you can do so by using the -size-in-bytes option together with
the -allow-ptr-arith-on-struct option . When a pointer points to a field in a

3-30

IDP – Illegal Dereferenced Pointer

structure, you will then be allowed to access other fields from this pointer.
Note that as a consequence, any other "out of bound" accesses in the code
will be ignored.

An alternative solution is to make your variable point to the structure rather
than to the field, as follows:

struct { int a; int b; } x;
char *p = &x; // the pointed object is the structure
*p = 0; // we are modifying x.a (first byte)
p++; *p = 0; // we are modifying x.a (second byte)
p++; *p = 0; // we are modifying x.a (third byte)
p++; *p = 0; // we are modifying x.a (fourth byte)
p++; *p = 0; // we are modifying x.b (fifth byte)

A further alternative is to follow the ANSI C recommendation to use the
“offsetof()” function, which jumps to the corresponding offset within the
structure:-

#include <stddef.h>
typedef struct _m { int a; int b; } S;
S x;
char *p = (char *) &x + offsetof(S,b); // points to field b

I have a red when reading a field of one structure
Consider the following example.

5 typedef struct {
6 unsigned char c1;
7 unsigned char c2;
8 } my_struct;
9
10 int main(void)
11 {
12 my_struct v;
13 unsigned short x=0,y=0;
14
15 v.c1=9;
16 v.c2=15;
17 x = *((unsigned short *)&v.c1);

3-31

3 Check Descriptions for C Code

Just like the example in “Pointer to a structure field” on page 3-30, the object
pointed to is the field in the structure, not the structure itself. Therefore, it
is only possible to navigate inside this field. A short variable occupies more
memory than a char, so it is a red pointer out of bounds.

This can be addressed by replacing

x = * ((unsigned short *) &v.c1);

with

y = (v.c1 << sizeof(v.c2)*8) | v.c2;

This solution also ensures that the code is no longer target dependent.

3-32

COR – Correctness Condition

COR – Correctness Condition

In this section...

“Array Conversion Must Not Extend Range: COR” on page 3-33

“Function Pointer Does Not Point to a Valid Function: COR” on page 3-34

Array Conversion Must Not Extend Range: COR
This is a check to establish whether a small array is mapped onto a bigger one
through a pointer cast. Consider the following example.

1

2 typedef int Big[100];

3 typedef int Small[10];

4 typedef short EquivBig[200];

5

6 Small smalltab;

7 Big bigtab;

8

9 void main(void)

10 {

11 volatile int random;

12

13 Big * ptr_big = &bigtab;

14 Small * ptr_small = &smalltab;

15

16 if (random) {

17 Big *new_ptr_big = (Big*)ptr_small;

18 // COR ERROR: array conversion must not extend range

19 }

20 if (random) {

21 EquivBig *ptr_equivbig = (EquivBig*)ptr_big;

22 Small *ptr_new_small = (Small*)ptr_big;

23 // Conversion verified

22 }

23 }

In this example, a pointer is initialized to the Big array with the address of
the Small array. This is not legal since it would be possible to dereference this

3-33

3 Check Descriptions for C Code

pointer outside the Small array. Line 21 shows that the mapping of arrays of
the same size but with different prototypes is acceptable.

Function Pointer Does Not Point to a Valid Function:
COR
This is a check to establish whether a function pointer points to a valid
function or a function with a valid prototype. The software checks, for
example, whether:

• The pointer points to a function.

• Each argument passed to a function matches the corresponding argument
in the function prototype.

• The number of arguments passed to a function matches the number of
arguments in the function prototype.

• The return type passed to a function pointer matches the return type
declared in the function prototype.

Pointer Does Not Point To Any Function
Consider the following example.

1

2 typedef void (*CallBack)(float *data);

3 typedef struct {

4 int a;

5 char name[20];

6 CallBack func;

7 } funcS;

8

9 funcS myvar;

10 CallBack cb;

11

12 void My_function(float *data)

13 {

14 *data = 2;

15 }

16

17 static void Struct_not_init_art_ptr_def(void)

3-34

COR – Correctness Condition

18 {

19 cb = &My_function;

20 }

21

22 int main(void)

23 {

24 float fval=0;

25

26 cb = myvar.func;

27 cb(&fval);

28 // Red COR: function pointer does not point to a valid function

29 return 0;

30 }

In this example, func has a prototype that conforms to the declaration of
CallBack. Therefore, func is initialized to point to the NULL function through
the global declaration of funcS. So a NULL pointer is assigned to the cb local
variable.

Consider a second example.

1

2 #define MAX_MEMSEG 32764

3 typedef void (*ptrFunc)(int memseg);

4 ptrFunc initFlash = (ptrFunc)(0x003c);

5

6 void main(void)

7 {

8 int i;

9

10 for (i = 0 ; i < MAX_MEMSEG; i++)

11 // In Source view, for statement has red, dashed underlining to highlight issue with initFla

12 {

13 initFlash(i);

14 // Red COR: function pointer does not point to a valid function

15 }

16 }

3-35

3 Check Descriptions for C Code

Polyspace verification does not take the memory mapping of programs into
account, and cannot determine whether 0x003 is the address of a function code
segment or a data segment. Therefore, the verification generates a red check.

Function Arguments Do Not Match Prototype Arguments
Consider the flowing example.

1

2 typedef struct {

3 float r;

4 float i;

5 } complex;

6

7 typedef int (*t_func)(complex*);

8

9 int foo_type(int *x)

10 {

11 if (*x%2 == 0) return 0;

12 else return 1;

13 }

14

15 void main(void)

16 {

17 t_func ptr_func;

18 int j,i = 0;

19

20 ptr_func = foo_type;

21 j = ptr_func(&i);

22 // Red COR: function pointer does not point to a valid function

23 }

24

In this example, ptr_func is a pointer to a function that expects the input
argument to be a pointer to a complex structure. However, the input
argument is a pointer to an int.

Wrong Number of Arguments
Consider the following example.

3-36

COR – Correctness Condition

1

2 typedef int (*t_func_2)(int);

3 typedef int (*t_func_2b)(int,int);

4

5 int foo_nb(int x)

6 {

7 if (x%2 == 0)

8 return 0;

9 else

10 return 1;

11 }

12

13

14 void main(void)

15 {

16 t_func_2b ptr_func;

17 int i = 0;

18

19 ptr_func = (t_func_2b)foo_nb;

20 i = ptr_func(1,2);

21 // Red COR: function pointer does not point to a valid function

22 }

23

In this example, ptr_func is a pointer to a function that takes two arguments.
However, the function pointer has been initialized to point to a function that
takes only one argument.

Wrong Return Type
Consider the following example.

1

2 typedef int (*t_func_2)(int);

3 typedef double (*t_func_2b)(int);

4

5 int foo_nb(int x)

6 {

7 if (x%2 == 0)

8 return 0;

9 else

3-37

3 Check Descriptions for C Code

10 return 1;

11 }

12

13

14 void main(void)

15 {

16 t_func_2b ptr_func;

17 int i = 0;

18

19 ptr_func = (t_func_2b)foo_nb;

20 i = ptr_func(2);

21 // Red COR ERROR: function pointer does not point to a valid function

22 }

23

In this example, ptr_func is a pointer to a function that returns a double.
However, the function pointer is initialized to point to a function that returns
an int.

Consider return types for arithmetic functions. You might be able use
arithmetic functions in your code without including the <math.h> file because
your compiler could associate integral return types with implicit functions.
However, Polyspace software has built-in arithmetic functions. If you do not
include <math.h> for code with the relevant arithmetic functions, you might
see results that are not consistent.

The following example does not include <math.h> and verification generates a
red COR check for the cos function.

1

2 int main(void) {

3

4 double x;

5 x = cos(2*3.1415);

6 // Red COR: function pointer does not point to a valid function

7 }

Including <math.h> resolves the issue.

1 #include <math.h>

2 int main(void) {

3-38

COR – Correctness Condition

3

4 double x;

5 x = cos (2*3.1415);

6 }

3-39

3 Check Descriptions for C Code

NIP – Non-Initialized Pointer
Check to establish whether a reference is initialized before being dereferenced.
Consider the following example.

2
3 void main(void)
4 {
5 int* p;
6 *p = 0; // NIP ERROR: reference is not initialized
7 }

As p is not initialized, an undefined memory cell would be overwritten at line
6 (*p = 0) (also leading to the unreachable gray check on "*").

3-40

ASRT – User Assertion

ASRT – User Assertion
This is a check to establish whether a user assertion is valid. If the assumption
implied by an assertion is invalid, then the standard behavior of the assert
macro is to abort the program. Polyspace verification therefore considers a
failed assertion to be a runtime error. Consider the following example.

1 #include <assert.h>
2
3 typedef enum
4 {
5 monday=1, tuesday,
6 wensday, thursday,
7 friday, saturday,
8 sunday
9 } dayofweek ;
10
11 // stubbed function
12 dayofweek random_day(void);
13 int random_value(void);
14
15 void main(void)
16 {
17 unsigned int var_flip;
18 unsigned int flip_flop;
19 dayofweek curDay;
20 unsigned int constant = 1;
21
22 if (random_value()) flip_flop=1; else flip_flop=0;
// flip_flop can randomly be 1 or 0

23 var_flip = (constant | random_value());
// var_flip is always > 0
24
25 if(random_value()) {
26 assert(flip_flop==0 || flip_flop==1); // User Assertion is
verified
27 assert(var_flip>0); // User Assertion is
verified
28 assert(var_flip==0); // ASRT ERROR: Failure User
Assert

3-41

3 Check Descriptions for C Code

29 }
30
31 if (random_value()) {
32 curDay = random_day(); // Random day of the week
33 assert(curDay > thursday); // ASRT Warning: User
assertion may fails
34 assert(curDay > thursday); // User assertion is
verified
35 assert(curDay <= thursday); // ASRT ERROR: Failure User
Assertion
36 }
37 }

In the main, the assert function is used in two different manners:

• To establish whether the values flip_flop and var_flip in the program are
inside the domain which the program is designed to handle. If the values
were outside the range implied by the assert (see line 28), then the program
would not be able to run properly. Thus they are flagged as runtime errors.

• To redefine the range of variables as shown at line 34 where curDay is
restricted to just a few days. Indeed, Polyspace verification makes the
assumption that if the program is executed without a runtime error at line
33, curDay can only have a value greater than thursday after this line.

3-42

NTC – Non-Termination of Call

NTC – Non-Termination of Call

In this section...

“Non-Termination of Calls and Loops: Informative Checks” on page 3-43

“Non Termination of a Call: NTC” on page 3-45

“Arithmetic Expressions: NTC” on page 3-46

Non-Termination of Calls and Loops: Informative
Checks
NTC and NTL are informative red (or orange) checks.

• They are the only red checks which can be filtered out as shown below

• They don’t stop the verification

• As for other red checks, code found after them are gray (unreachable)

• These checks may only be red. There are no “orange” NTL or NTC checks.

• They can reveal a bug, or can simply just be informative

NTL In a Non Terminating Loop, the break condition is never met.
Here are some examples.

while(1) { function_call(); } // informative NTL

The following may reveal a bug:

while(x>=0) {x++; } // where x is an unsigned int.

The following red NTL reveals a bug in the array access, flagged
in orange:

for(i=0; i<=10; i++) my_array[i] = 10; // where
int my_array[10]; applies.

In the following example, the first iteration of the loop is red, and
therefore it is flagged as an NTL. The “i++” will be gray, because
the first iteration crashed.

3-43

3 Check Descriptions for C Code

ptr = NULL; for(i=0; i<=100; i++) *ptr=0; //

NTC Suppose that a function calls f(), and that function call is flagged
with a red NTC check. There could be five distinct explanations:

• “f” contains a red error;

• “f” contains an NTL ;

• “f” contains an NTC;

• “f” contains an orange which is context dependant; that is, it
is either red or green. For this particular call, it makes the
function “f” crash.

• “f” is a mathematical function, such as sqrt, acos which has
always an invalid input parameter

Remember, additional information can be found when clicking
on the NTC

Note A sqrt check is only colored if the input parameter is never valid. For
instance, if the variable x may take any value between -5 and 5, then sqrt(x)
has no color.

The list of constraints which cannot be satisfied (found by clicking on the NTC
check) represents the variables that cause the red error inside the function.
The (potentially) long list of variables can help to understand the cause of the
red NTC, as it shows each condition causing the NTC

• where the variable has a given value; and

• where the variable is not initialized. (Perhaps the variable is initialized
outside the set of files under verification?).

If a function is identified which is not expected to terminate (such as a loop
or an exit procedure) then the -known-NTC function is an option. You will
find all the NTCs and their consequences in the k-NTC facility in the Viewer,
allowing you to filter them.

3-44

NTC – Non-Termination of Call

Non Termination of a Call: NTC
This is a check to establish whether a procedure call returns. It is not the
case when the procedure contains an endless loop or a certain error, or if the
procedure calls another procedure which does not terminate. In the latter
instance, the status of this check is propagated to caller.

1
2
3 void foo(int x)
4 {
5 int y;
6 y = 1 / x; // Warning ZDV: its depends of the context
7 while(1) { // NTL ERROR: loop never terminates
8 if (y != x) {
9 y = 1 / (y-x);
10 }
11 }
12 }
13
14 void main(void) {
15 volatile int _x;
16
17 if (_x)
18 foo(0); // NTC ERROR: Zero DiVision (ZDV) in foo
19 if (_x)
20 foo(2); // NTC ERROR: Non Termination Loop (NTL) in foo
21
22 }
23

In this example, the function foo is called twice in main and neither of these 2
calls ever terminates.

1 The first never returns because a division by zero occurs at line 6 (bad
argument value),

2 The second never terminates because of an infinite loop (red NTL) at line 7.

Also with reference to the example and as an aside, note that by using
the -context-sensitivity "foo" option at launch time it would be possible for

3-45

3 Check Descriptions for C Code

Polyspace verification to show explicitly that a ZDV error comes from the
first call of foo in main.

An NTC check can only be red or uncolored, unless you use the
-context-sensitivity option. If you use the -context-sensitivity option, NTC
checks can also be orange.

If you set the Review Level slider to 0, the software does not display NTC
checks on the Results Explorer or Results Summary tab.

Arithmetic Expressions: NTC
This is a check to establish whether standard arithmetic functions are used
with valid arguments, as defined in the following:

• Argument of sqrt must be positive (ISO®/IEC 9899 section 7.5.5.2)

• Argument of tan must be different from pi/2 modulo pi (ISO/IEC 9899
section 7.5.2.7)

• Argument of log must be strictly positive (ISO/IEC 9899 section 7.5.4.4)

• Argument of acos and asin must be within [-1..1] (ISO/IEC 9899 sections
7.5.2.1 and 7.5.2.2)

• Argument of exp must be less than or equal to 709 (ISO/IEC 9899 section
7.5.4.1)

• Argument of atanh must be within]-1..1[(ISO/IEC 9899 section 7.12.5.3)

• Argument of acosh must be greater or equal to 1 (ISO/IEC 9899 section
7.12.5.1)

A domain error (such that errno returns EDOM) occurs if an input argument
is outside the domain over which the mathematical function is defined. A
range error occurs (such that errno returns ERANGE) if the result cannot be
represented as a double value. In the latter case, the function returns 0 if the
result is too small, or HUGE_VAL with the sign if it is too big.

Consider the following example

1
2 #include <math.h>

3-46

NTC – Non-Termination of Call

3 #include <assert.h>
4
5 extern int random_int(void);
6
7 int main(void)
8 {
9
10 volatile double dbl_random;
11 const double dbl_one = 1.0;
12 const double dbl_mone = -1.0;
13
14 double sp = dbl_random;
15 double p = dbl_random;
16 double sn = dbl_random;
17 double n = dbl_random;
18 double no_trig_val_neg = dbl_random;
19 double no_trig_val_pos = dbl_random;
20 double pun = dbl_random;
21 double res;
22
23 // assert is used here to redefine range values of variables
24 assert(sp > 0.0);
25 assert(p >= 0.0);
26 assert(sn < 0.0);
27 assert(n <= 0.0);
28 assert(pun < 1.0);
29 assert(no_trig_val_neg < -1.0); assert(no_trig_val_pos > 1.0);
30
31 if (random_int()) res = sqrt(sn); // NTC ERROR:
need argument positive
32 if (random_int()) res = asin(no_trig_val_neg); // NTC ERROR:
need argument in range [-1..1]
33 if (random_int()) res = asin(no_trig_val_pos); // NTC ERROR:
need argument in range [-1..1]
34 if (random_int()) res = acos(no_trig_val_pos); // NTC ERROR:
need argument in range [-1..1]
35 if (random_int()) res = acos(no_trig_val_neg); // NTC ERROR:
need argument in range [-1..1]
36 if (random_int()) res = tan(1.5707963267948966); // NTC ERROR:
need argument in range]-pi/2..pi/2[

3-47

3 Check Descriptions for C Code

37 if (random_int()) res = log(n); // NTC ERROR:
need argument strictly positive
38 if (random_int()) res = exp(710); // NTC ERROR:
need argument less or equal to 709
39
40 // No information about asin or acos because of random value
41 if (random_int()) {
42 res = asin(dbl_random);
43 res = acos(dbl_random);
44 }
45
46 // hyperbolic functions are available in the float range
47 if (random_int()) {
48 res = cosh(710);
49 res = cosh(10.0);
50 assert (res < 1.0);
51 }
52 if (random_int()) res = sinh(710);
53 if (random_int()) {
54 res = tanh(1.0);
55 assert (res > -1.0 && res < 1.0);
56 }
57
58 // inverted hyperbolic functions
59 if (random_int()) res = acosh(pun); // NTC ERROR:
Need argument >= 1
60 else res = acosh(1.0);
61 if (random_int()) res = atanh(no_trig_val_neg); // NTC ERROR:
Need argument in]-1..1[
62 if (random_int()) res = atanh(no_trig_val_pos); // NTC ERROR:
Need argument in]-1..1[
63 if (random_int()) res = atanh(dbl_mone); // NTC ERROR:
Need argument in]-1..1[
64 if (random_int()) res = atanh(dbl_one); // NTC ERROR:
Need argument in]-1..1[
65
66 return 0;
67 }
68

3-48

NTC – Non-Termination of Call

sqrt, tan, asin, acos, exp and log errors are derived directly from the
mathematical definition of functions. Polyspace verification highlights any
definite problems by means of an NTC to show that this is where execution
would terminate. No NTC information is delivered when Polyspace cannot
determine the exact value of the argument, (for asin and acos at lines 42 and
43). No range restriction is currently made for hyperbolic functions.

Caution Due to a lack of precision in some areas, Polyspace verification is
not always able to indicate a red NTC check on mathematical functions even
where a problem exists. In the following example involving a sqrt function,
neither an orange nor a red check is shown on line16 even though the variable
val2 is negative.

By default it is important to consider each call to any mathematical functions
as though it had been highlighted by an orange check, and could therefore
lead to a runtime error.

1
2 #include <math.h>
3
4 extern int random_int(void);
5
6 int main(void)
7 {
8
9 double val1, val2;
10
11 int i;
12 val2 = 5.0;
13 for (i = 0 ; i < 10 ; i++) {
14 val2 = val2 - 1.0;
15 }
16 val1 = sqrt(val2); // No check on sqrt
17 return ((int)val1);
18 }
19

3-49

3 Check Descriptions for C Code

K_NTC – Known Non-Termination of Call
By using the -known-NTC option with a specified function in a verification,
it is possible to change a “NTC – Non-Termination of Call” on page 3-43
check to a k-NTC check. Like NTC checks, k-NTC checks are propagated to
their callers. In the Results Manager perspective, you can filter out known
functions that do not terminate by applying the K_NTC filter.

Consider the following example, supposing that -know-NTC "SysHalt"
option has been applied in a verification.

1
2 /* external get data function */
3 extern int get_data(int *ptr,void *data);
4 extern int printf (const char *, ...);
5
6 // known NTC function
7 void SysHalt(int value)
8 {
9 printf("Halt value %d",value);
10 while (1) ; // NTL ERROR: Loop Never Terminate
11 }
12
13 #define OK 1
14 int main(void)
15 {
16 int data, *ptr = NULL;
17 int status = OK;
18
19 // get next store
20 status = get_data(ptr,(void *)&data);
21 if (status != OK)
22 SysHalt(status); // k-NTC check: Call never
terminate
23
24 return(0);
25 }

In the example, the relevant NTC check is converted to a k-NTC one.

3-50

NTL – Non-Termination of Loop

NTL – Non-Termination of Loop

In this section...

“Non Termination of Loop: NTL” on page 3-51

“Tooltips for NTL Checks” on page 3-51

“NTL Check Examples” on page 3-52

Non Termination of Loop: NTL
This is a check to establish whether a loop (for, do-while or while)
terminates.

An NTL check can only be red or uncolored, unless you use the
-context-sensitivity option. If you use the -context-sensitivity option,
NTL checks can also be orange.

If you set the Review Level slider to 0, the software does not display NTL
checks on the Results Explorer or Results Summary tab.

Tooltips for NTL Checks
Tooltips provide range information in the viewer, including the number
of iterations for loops.

There are 2 possible situations:

• Loops that terminate – A tooltip gives the number of iterations of the
loop. For example, for (i=0; i<10; i++), a tooltip on the for keyword
says Number of iteration(s): 10.

• Non–terminating loops — The NTL check contains information about
the maximum number of iterations that can be done. This number is an
overset of the real number of iterations (which may be lower).

For example:

- Failure at a given iteration, for (i=0; i<10; i++) y = 2 /
(i - 5); — The NTL check on the for keyword says: Number of
iteration(s): 6

3-51

3 Check Descriptions for C Code

This means that the loop fails at the 6th iteration, which can help you
find the orange check that contains the failure.

- Infinite loop x = 0; while (x >= 0) y = 2; — The NTL check on
the for keyword says: Number of iteration(s): 0..?

This means that the loop has an unknown number of iterations (up to
an infinite number). It does not mean that the loop is an infinite loop,
but that it may be an infinite loop. You would also get 0..? on the loop
while (1) { if (random) break; }.

NTL Check Examples
The following examples show conditions leading to an NTL check.

NTL Example 1:

Consider the following example:

1
2 // Function prototypes
3 void send_data(double data);
4 void update_alpha(double *a);
5
6 void main(void)
7 {
8 volatile double _acq;
9 double acq, filtered_acq, alpha;
10
11 // Init
12 filtered_acq = 0.0;
13 alpha = 0.85;
14
15 while (1) { //NTL ERROR: Non Termination Loop
16 // Acquisition
17 acq = _acq;
18 // Treatment
19 filtered_acq = acq + (1.0 - alpha) * filtered_acq;
20 // Action
21 send_data(filtered_acq);
22 update_alpha(&alpha);
23 }

3-52

NTL – Non-Termination of Loop

24 }

In the example, the continuation condition is always true and the loop will
never exit. Polyspace verification will raise an error in trivial examples such
as this, and in much more complex circumstances.

NTL Example 2:

Consider this second verification. When an error is found inside a for,
do-while, or while loop, Polyspace will not continue to propagate it.

1
2 void main(void)
3 {
4 int i;
5 double twentyFloat[20];
6
7 for (i = 0; i <= 20; i++) { // NTL ERROR: propagation of
OBAI ERROR
8 twentyFloat[i] = 0.0; // OBAI Warning: 20 verification
with i in [0,19] and one ERROR with i = 20
9 }
10 }

At line 8 in this example, the red OBAI related to the 21st execution of the
loop has yielded the orange check. The 20 first executions would be no
problem, so this orange warning represents a combination of red and green
checks.

NTL Example 3:

In the following example, there is a red NTL on the for.

1 int tab[4];
2
3 int g(int i) {
4 tab[i] = i; // Orange OBAI
5 return 1;
6 }
7

3-53

3 Check Descriptions for C Code

8 void f(void)
9 {
10 int i;
11 int x;
12
13 for (i=0; i <5; i++) { // Red NTL
14 x = g(i);
15 }
16 }

In this example, the for loop is well-bounded, but there is an NTL check on it
even though the body is green.

The cause of the NTL is located in the function g(). There is a contextual
orange OBAI in this function since the array is only 4 ints big. The first call
to g() will be OK, but the last one will lead to an OBAI. There is no NTC on
g() because there are valid calls to this function. And NTC are always red, or
they are not present.

NTL Example 4:

In the following example, verification flags an NTL on the while.

1
2 int random(void);
3 unsigned int x;
4 void foo(void)
5 {
6 x = random();
7 while (x!=0) { // red NTL
8 }
9 x--;

10 }

If x=0, the while loop is not executed and the program jumps to x--;. If x is
not 0, the while loop is executed, and x is not modified in the loop, therefore
the loop never terminates.

3-54

NTL – Non-Termination of Loop

Note An NTL check can only be red or uncolored, unless you use the
-context-sensitivity option. If you use the -context-sensitivity option, NTL
checks can also be orange.

NTL Example 5:

In the following example, there is a red NTL on the while.

1
2 extern in var;
3 unsigned char getstatus(void)
4 {
5 return (!(var == 0));
6 }
7
8 void func(void)
9 {
10 while(getstatus()) { // red NTL: if we enter the loop we will never ex
11 /* do something without change value of var */
12 }
13 assert(1); // green ASRT
14 }
15 int main(void) { func(); return 0;}

In this example, we have a red because:

• At the first evaluation, getstatus() returns TRUE or FALSE. If it returns
FALSE, we do not enter in the while() loop and jump to assert() line

• As soon as we enter in the while() loop var value does not change anymore
and so getstatus() continues to return same value: 1.

NTL Example 6:

In the following example, verification uses the options:

• -scalar-overflows-checks signed_and_unsigned

• -scalar-overflows-behavior truncate-on-error

3-55

3 Check Descriptions for C Code

There is a red NTL on the while.

1 extern unsigned char ucfullrange(void);
2
3 void foo(void)
4 {
5 unsigned char a = ucfullrange();
6
7 while (a--) { // red NTL
8 assert(1);
9 }
10 assert(1);
11 }

In this example, the variable becomes 0 at the end of the loop, the loop
terminates and the variable is decremented one more time.

With the two options specified above, since the variable is unsigned, a
wrap-around occurs leading to an unsigned overflow. The verification reports
this as an orange OVFL on the “a--”, and propagates it to the while loop with
the message:
“The Loop is infinite or contains a run-time error.”

In this case, the loop contains a run-time error, causing the red NTL.

3-56

STD_LIB – Standard Library Function Call

STD_LIB – Standard Library Function Call
This is a check to determine whether the arguments of a call to a function
from the C standard library are valid.

Consider the following example with an invalid argument in standard library
function call.

1 #include <assert.h>
2 #include <string.h>
3 volatile int rd;
4 const char *str = "test";
5 char gbuffer[10] = "is ";
6 int main(void)
7 {
8 if (rd) strcat((char*)0, str);
9 if (rd) strcat((char*)0x12345678, str);
10 if (rd) strcat(gbuffer, str);
11 return 1;
12 }

There are three calls to the standard library function strcat. For each call,
the second argument str is a valid string. However, the validity of the first
argument varies:

• In the first call, (char*)0 does not point to sufficient allocated memory.
The software generates a red STD_LIB check for strcat.

• In the second call, (char*)0x12345678 may point to sufficient allocated
memory. The software generates an orange STD_LIB check for strcat.

• In the third call, there is sufficient memory in gbuffer for the concatenated
string "is test". As both arguments are valid, the software generates
a green STD_LIB check for strcat.

3-57

3 Check Descriptions for C Code

ABS_ADDR – Absolute Address
The software generates an orange ABS_ADDR check when an absolute
address is assigned to a pointer. The check is colored orange because the
software has no information about the absolute address and cannot verify, for
example, the address, availability of memory, and initialization of memory.

The software permits memory access to the absolute address after generating
the orange ABS_ADDR check for the first assignment operation. IDP and
NIV checks for memory access operations after the first assignment operation
are green.

Consider the following code.

27 int *p;

28 int x;

29

30 p = (int *)0x32; // Orange ABS_ADDR

31 x = *p; // Green IDP and NIV

32

33 p++;

34 y = *p; // Orange IDP and NIV

35

On line 30, the first assignment of the absolute address to a pointer produces
an orange ABS_ADDR check. The next memory access operation produces
green IDP and and NIV checks.

On line 34, the memory access operation produces orange IDP and NIV
checks. The checks are orange because the accessed memory location is not
covered by an orange ABS_ADDR check.

Note By default, the software displays ABS_ADDR checks on the Results
Explorer or Results Summary tab only if you set the Review Level slider to
All.

3-58

ABS_ADDR – Absolute Address

If you know that the absolute addresses in your code are valid, you can specify
the option -green-absolute-address-checks, which makes all ABS_ADDR
checks green. See “Green absolute address checks” on page 1-57.

3-59

3 Check Descriptions for C Code

IPT – Inspection Points
You can create inspection points in the code that provide range information.

For example:

#pragma Inspection_Point <var1> <var2>

where var1 and var2 are scalar variables, instructs the verification to provide
range information for var1 and var2 at that point in the code.

You see this information in a tooltip message when you place your cursor
over var1 or var2.

Note Use the Run-time Check Details Ordered by Color/File component
of the MATLAB® Report Generator™ to display IPT checks in generated
reports. Under Categories To Include, select the Inspection Point
Checks (Informational Checks) check box. For more information, see
“Customize Verification Reports”.

Consider the following example:

1
2 typedef struct {
3 unsigned char msb;
4 unsigned char lsb;
5 } int16;
6
7 int main(void)
8 {
9 volatile unsigned char var_uc;
10 float var_float;
11 int i;
12 int16 val;
13
14 #pragma Inspection_Point var_uc
15 i = 3;
16 #pragma Inspection_Point i

3-60

IPT – Inspection Points

17 val.msb = 12;
18 val.lsb = var_uc;
19 #pragma Inspection_Point val
20 var_float = 10.0;
21 #pragma Inspection_Point var_float
22
23 }
24

The software provides tooltips with range information for the scalar variables
var_uc and i at lines 14 and 16 respectively. However, tooltips are not
provided for inspection points at lines 19 and 21.

3-61

3 Check Descriptions for C Code

POW (Deprecated)

Note The POW check is deprecated in R2009a and later. The POW check no
longer appears in Polyspace results.

Check to establish whether the standard pow function from math.h library is
used with an acceptable (positive) argument.

3-62

UNFL (Deprecated)

UNFL (Deprecated)

Note The UNFL check is deprecated in R2010a and later. The UNFL check
no longer appears in Polyspace results. Instead of two separate UNFL and
OVFL checks, a single OVFL check now appears.

These are checks to establish whether arithmetic expressions underflow. A
scalar check is used with integer type, and a float check for floating point
expressions. Consider the following example.

3-63

3 Check Descriptions for C Code

UOVFL (Deprecated)

Note The UOVFL check is deprecated in R2009a and later. The UOVFL
check no longer appears in Polyspace results. Instead of a single UOVFL
check, the results now display two checks, a UNFL and an OVFL.

The check UOVFL only concerns float variables. Polyspace verification
shows an UOVFL when both overflow and underflow can occur on the same
operation.

3-64

4

Check Descriptions for C++
Code

• “C++ Check Categories” on page 4-3

• “UNR – Unreachable Code” on page 4-10

• “OBAI – Out of Bounds Array Index” on page 4-12

• “ZDV – Division by Zero” on page 4-14

• “NIV (NIVL) – Non-Initialized Variable” on page 4-15

• “OVFL – Scalar and Float Overflow” on page 4-17

• “SHF – Shift Operations” on page 4-22

• “NNT – Pointer of function Not Null” on page 4-25

• “CPP – C++ Specific Checks” on page 4-27

• “FRV – Function Returns a Value” on page 4-33

• “IDP – Illegal Dereferenced Pointer” on page 4-35

• “COR – Correctness Condition” on page 4-44

• “NIP – Non-Initialized Pointer” on page 4-49

• “EXC – Exception Handling” on page 4-50

• “ASRT – User Assertion” on page 4-64

• “OOP – Object Oriented Programming” on page 4-66

• “NTC – Non-Termination of Call” on page 4-71

• “NTL – Non Termination of Loop” on page 4-74

• “ABS_ADDR – Absolute Address” on page 4-77

4 Check Descriptions for C++ Code

• “INF – Potential Call” on page 4-79

• “POW (Deprecated)” on page 4-82

• “UNFL (Deprecated)” on page 4-83

• “UOVFL (Deprecated)” on page 4-84

4-2

C++ Check Categories

C++ Check Categories
This section presents all categories of checks that Polyspace software verifies.
These checks are classified into acronyms. Each acronym represents one or
more verifications made by Polyspace software. The list of acronyms, checks
and associated colored messages are listed in the following tables.

In this section...

“Acronyms Associated with Specific C++ Constructions” on page 4-3

“Acronym Not Related to C++ Constructions (Also Used for C Code):” on
page 4-7

Acronyms Associated with Specific C++ Constructions

Category Acronym Green Gray

function returns a
value

FRV function returns a value Unreachable check:
function returns a value

non null
this-pointer

NNT this-pointer [of f] is not null Unreachable check:
this-pointer [of f] is not
null

CPP array size is strictly positive Unreachable check: array
size is strictly positive

CPP typeid argument is correct Unreachable check: typeid
argument is correct

CPP dynamic_cast on pointer is
correct

Unreachable check:
dynamic_cast on pointer is
correct

CPP dynamic_cast on reference
is correct

Unreachable check:
dynamic_cast on reference
is correct

C++ related
instructions

INF Informative check: f is
implicitly called

Informative check: implicit
call of f is unreachable

4-3

4 Check Descriptions for C++ Code

Category Acronym Green Gray

OOP call of virtual function [f] is
not pure

Unreachable check: call of
pure virtual function [f]

OOP this-pointer type [of f] is
correct

Unreachable check:
this-pointer type [of f]
is correct

INF Informative check: f is
called if this-pointer is of
type T

Informative check: call of
f depending on this type is
unreachable

OOP pointer to member function
points to a valid member
function

Unreachable check: pointer
to member function points
to a valid member function

OOP Unreachable check: call to
no function Information

INF Informative check: f is
potentially called through
pointer to member function

Informative check:
potential call to f through
pointer to member function
is unreachable

INF Informative check: f is
called during construction
of T

Informative check: call of f
during construction of T is
unreachable

Display of errors
that relate to
Object Oriented
Programming and
inheritance

INF Informative check: f is
called during destruction of
T

Informative check: call of
f during destruction of T is
unreachable

EXC exception raised as specified
in the throw list

Unreachable check:
exception raised as specified
in the throw list

EXC catch parameter
construction does not
throw

Unreachable check: catch
parameter construction
does not throw

EXC dynamic initialization does
not throw

Unreachable check:
dynamic initialization
does not throw

Display of errors
that relate to
exception handling

4-4

C++ Check Categories

Category Acronym Green Gray

EXC destructor or delete does not
throw

Unreachable check:
destructor or delete does not
throw

EXC main, task or C library
function does not throw

Unreachable check: main,
task or C library function
does not throw

EXC call [to f] does not throw Unreachable check: call [to
f] does not throw

EXC function does not throw Unreachable check:
function does not throw

EXC expression value is not
EXCEPTION_CONTINUE_
EXECUTION

Unreachable check:
expression value is not
EXCEPTION_CONTINUE_
EXECUTION

EXC Unreachable check: throw
is not allowed with option
-no-exception

Category Acronym Red Orange

function returns a
value

FRV Error: function does not
return a value

Warning: function may not
return a value

non null
this-pointer

NNT Error: this-pointer [of f] is
null

Warning: this-pointer [of f]
may be null

4-5

4 Check Descriptions for C++ Code

Category Acronym Red Orange

CPP Error: array size is not
strictly positive

Warning: array size may not
be strictly positive

CPP Error: incorrect typeid
argument

Warning: typeid argument
may be incorrect

CPP Error: incorrect
dynamic_cast on pointer
(verification continues using
a null pointer)

Warning: dynamic_cast on
pointer may be incorrect

CPP Error: incorrect dynamic
cast on reference

Warning: dynamic_cast on
reference may be incorrect

C++ related
instructions

INF

OOP Error: call of pure virtual
function [f]

Warning: call of virtual
function [f] may be pure

OOP Error: incorrect this-pointer
type [of f]

Warning: this-pointer type
of [f] may be incorrect

OOP Error: pointer to member
function is null or points to
an invalid member function

Warning: pointer to member
function may be null or
point to an invalid member
function

Display of errors
that relate to
Object Oriented
Programming and
inheritance

INF

EXC Error: exception raised is
not specified in the throw
list

Warning: exception raised
may not be specified in the
throw list

EXC Error: throw during catch
parameter construction

Warning: possible throw
during catch parameter
construction

EXC Error: throw during
dynamic initialization

Warning: possible
throw during dynamic
initialization

EXC Error: throw during
destructor or delete

Warning: possible throw
during destructor or delete

Display of errors
that relate to
exception handling

4-6

C++ Check Categories

Category Acronym Red Orange

EXC Error: main, task or C
library function throws

Warning: main, task or C
library function may throw

EXC Error: call [to f] throws
(verification jumps to
enclosing handler)

Warning: call [to f] may
throw

EXC Error: function throws
(verification jumps to
enclosing handler)

Warning: function may
throw

EXC Error: expression value is
EXCEPTION_CONTINUE_
EXECUTION (limitation)

Warning: expression
value may be
EXCEPTION_CONTINUE_
EXECUTION (limitation)

EXC Error: throw is not allowed
with option -no-exception

Acronym Not Related to C++ Constructions (Also
Used for C Code):

Category Acronym Green Gray

Out of bound array
index

OBAI Array index is within its
bounds

Unreachable check: out of
bounds array index error

Zero division ZDV Unreachable check:

Non-initialized
variable

NIV
local/other

[local] variable is initialized Unreachable check:

scalar or float
overflows

OVFL Unreachable check: variable
overflow error

Illegal dereference
pointer

IDP Reference refers to a valid
object

Unreachable check: invalid
reference

Correctness
condition

COR Function pointer must point
to a valid function

Unreachable check:
Function pointer must
point to a valid function

4-7

4 Check Descriptions for C++ Code

Category Acronym Green Gray

Shift amount out of
bounds

SHF Scalar shift amount is
within its bounds

Unreachable check: shift
error

Non initialized
pointer

NIP Reference is initialized Unreachable check:
non-initialized reference

user assertion
failures

ASRT User assertion is verified Unreachable check: user
assertion error

non termination of
call

NTC

non termination of
loop

NTL

Unreachable check UNR Unreachable code

Category Acronym Red Orange

Out of bound array
index

OBAI Out of bound array Array index may be outside
its bounds

Zero division ZDV [scalar | float] division by
zero occurs

[scalar | float] division by
zero may occur

Non-initialized
variable

NIV
local/other

[local] variable is not
initialized

[local] variable may not
initialized

scalar or float
overflows

OVFL

Illegal dereference
pointer

IDP Reference refers to an
invalid object

Reference may not refer to
a valid object

Correctness
condition

COR Function pointer must point
to a valid function

Function pointer may point
to a valid function

COR Array conversion must not
extend range

Shift amount out of
bounds

SHF Scalar shift amount is
outside its bounds

SHF Left operand of left shift is
negative

4-8

C++ Check Categories

Category Acronym Red Orange

Non initialized
pointer

NIP Reference is not initialized
Reference may be
non-initialized

user assertion
failures

ASRT User assertion fails User assertion may fail

non termination of
call

NTC [f] call never terminates

non termination of
loop

NTL non termination of loop

Unreachable check UNR

4-9

4 Check Descriptions for C++ Code

UNR – Unreachable Code
Check to establish whether different code snippets (assignments, returns,
conditional branches and function calls) are reached. Unreachable code is
referred to as dead code, which is indicated by UNR checks and code colored
gray.

C++ Example

1

2 typedef enum {

3 Intermediate, End, Wait, Init

4 } enumState;

5

6 // automatic stubs

7 int intermediate_state(int);

8 int random_int(void);

9

10 bool State (enumState stateval)

11 {

12 int i;

13 if (stateval == Init) return false;

14 return true;

15 }

16

17 int main (void)

18 {

19 int i;

20 bool res_end;

21 enumState inter;

22

23 res_end = State(Init);

24 if (res_end == false) {

25 res_end = State(End);

26 inter = (enumState)intermediate_state(0);

27 if (res_end || inter == Wait) { // UNR Unreachable code

28 inter = End;

29 }

30 // use of i not initialized

4-10

UNR – Unreachable Code

31 if (random_int()) {

32 inter = (enumState)intermediate_state(i); // NIV Error: local variable is not initia

33 if (inter == Intermediate) {

34 inter = End;

35 }

36 }

37 } else { // UNR Unreachable code

38 i = 1;

39 inter = (enumState)intermediate_state(i);

40 }

41 return res_end;

42 }

Explanation
The example illustrates why code might be unreachable and therefore colored
gray:

• At line 27, res_end, a conditional part of a conditional branch is always
true. Because of the standard definition of the logical operator ||, the
other part inter == Wait is never evaluated. The software generates two
UNR checks — for if and inter.

• At line 24, the first branch of the if statement is always evaluated to be
true. Therefore, at line 37, the other branch else is never executed. The
software generates a UNR check.

Lines 33 and 34 after the red check on line 32 are not evaluated by Polyspace
verification. To verify these lines of code, you must fix the red check and
rerun the verification.

4-11

4 Check Descriptions for C++ Code

OBAI – Out of Bounds Array Index
Check to establish whether an index is within the bounds of array size during
array access.

C++ Example

1 #define TAILLE_TAB 1024

2 typedef int tab[TAILLE_TAB];

3

4 class Array

5 {

6 public:

7 Array(){};

8 void initArray();

9 private:

10 tab table;

11 };

12

13

14 void Array::initArray()

15 {

16 int index;

17

18 for (index = 0; index < TAILLE_TAB ; index++){

19 table[index] = 10;

20 }

21 table[index] = 1; // OBAI Error: array index is outside its bounds: [0..1023]

22 };

23

24

25 void main(void)

26 {

27 Array* test = new Array();

28 test->initArray(); // initArray has dashed, red underlining to indicate propagation o

29 }

4-12

OBAI – Out of Bounds Array Index

Explanation
Just after the loop on line 18, index equals 1024. Therefore, on line 21, the
assignment statement writes to a memory location that lies outside the array.

4-13

4 Check Descriptions for C++ Code

ZDV – Division by Zero
Check to establish whether the divisor of a division operator is not 0 (or 0.0).

C++ Example

1 extern int random_value(void);

2

3 class Operation {

4 public:

5 int zdvs(int p){

6 int j = 1;

7 return (1024 / (j-p)); // ZDV Error: scalar division by zero occurs

8 }

9 float zdvf(float p){

10 float j = 1.0;

11 return (1024.0 / (j-p)); // ZDV Error: float division by zero occurs

12 }

13 };

14

15 int main(void)

16 {

17 Operation op;

18

19 if (random_value())

20 op.zdvs(1); // zdvs has dashed, red underlining to indicate propagation of ZD

21

22 if (random_value())

23 op.zdvf(1.0); // zdvf has dashed, red underlining to indicate propagation of ZD

24 }

4-14

NIV (NIVL) – Non-Initialized Variable

NIV (NIVL) – Non-Initialized Variable
Check to establish whether a variable local or not is initialized before being
read. We make a distinction between local variables (including parameters
of functions) and others. So Polyspace verification checks for same problems
into two categories.

C++ Example

1 extern int random_int(void);
2 typedef double tab[20];
3
4
5 class operation
6 {
7 public:
8 int addI(int x, int y) { return y+=x; }; //*@@UNP-GRAY@@*/
9
10 void initTab(){
11 for (int i = 1; i < 20; i++) {
12 twentyFloat[i] = 0.0;
13 }
14 };
15
16 void addD(int x, int y){
17 twentyFloat[x] = twentyFloat[y] + 5.0; // NIV Green: index 0
is not initialized, but addD method is called with parameters 2 and 4,
never 0. So index 2 and 4 are initialized
18 };
19
20 protected:
21 tab twentyFloat;
22 };
23
24
25 void main(void)
26 {
27 operation calculate;
28 int x, y = 0;
29

4-15

4 Check Descriptions for C++ Code

30 if (random_int()) {
31 calculate.addI(x,y); // NIV ERROR: Non Initialized Variable
32 }
33
34 calculate.initTab();
35 calculate.addD(2,4);
36
37 }

Explanation
The result of the addition is unknown at line 28 because x is not initialized,
(UNR unreachable code on "+" operator).

In addition, line 16 shows how Polyspace software prompts you to investigate
further (by means of an orange check) when all cells have not been initialized.

A local variable is notified with a NIVL acronym.

Note The message associated with the check NIV or NIVL can give the type
of the variable if it concerns a basic type: "variable may be non initialized
(type unsigned int32)". The modifier volatile can also be notified: (type :
volatile unsigned int 8).

4-16

OVFL – Scalar and Float Overflow

OVFL – Scalar and Float Overflow

In this section...

“Scalar Overflows” on page 4-17

“Float Overflows” on page 4-18

“Constant Overflow” on page 4-20

Scalar Overflows
This check determines whether arithmetic expressions cause a scalar
overflow.

C++ Example

1 #include <float.h>
2 extern int random_int(void);
3
4 class Calcul
5 {
6 public:
7 int makeOverflow(int i){
8 return 2 * (i - 1) + 2; // OVFL Error: operation [+] on scalar
9 // 2^31 is an overflow value for int32
10 }
11 };
12
13 void main(void)
14 {
15 Calcul c;
16 int i = 1;
17
18 i = i << 30; // i = 2**30
19
20 if (random_int())
21 i = c.makeOverflow(i);
22 // makeOverflow has dashed, red underlining to
23 // indicate propagation of OVFL ERROR from line 8

4-17

4 Check Descriptions for C++ Code

24 }

Explanation: On a platform with a 32-bit architecture, the maximum integer
value is 231-1. Therefore, on line 8, 231 causes an overflow. This OVFL error
propagates to line 21.

Float Overflows
This check determines whether arithmetic expressions cause floating-point
overflow or underflow.

C++ Example

1 #include <float.h>
2 extern int random_int(void);
3
4 class Calcul
5 {
6 public:
7 float overflow (float value){
8 return 2 * value + 1.0;
9 // OVFL Error: operation [*] on float overflows
10 }
11 };
12
13 void main(void)
14 {
15 Calcul c;
16 float value = FLT_MAX;
17
18 if (random_int())
19 value = c.overflow(value); // overflow has dashed, red underlini
20 // indicate propagation of OVFL ERROR from line 8
21 }

Explanation: If value represents the biggest float, a number that is twice
value cannot be represented by the same data type and causes an overflow
on line 8. This OVFL error propagates to line 19.

4-18

OVFL – Scalar and Float Overflow

Overflow on the Biggest Float
There are occasions when it is important to understand when overflow may
occur on a float value approaching its maximum value. Consider the following
example.

void main(void)
{

float x, y;
x = 3.40282347e+38f; // is green
y = (float) 3.40282347e+38; // OVFL red

}

There is a red error on the second assignment, but not the first. This is
because rounding is not the same when casting a constant to a float, or a
constant to a double:

• floats are rounded to the nearest lower value.

• doubles are rounded to the nearest higher value.

Since, the real "biggest" value for a float (MAXFLOAT) is:
340282346638528859811704183484516925440.0,

• 3.40282347e+38 is strictly bigger than
340282346638528859811704183484516925440.

• In the case of the first assignment, 3.40282347e+38f is directly cast into a
float, which is less than MAXFLOAT.

• In the case of the second assignment, the value is first cast to a double
by your compiler, (using a temporary variable) then into a float because
of the case (another temporary variable). The float value is greater than
MAXFLOAT, so the check is red.

The solution to this problem is to use the "f" suffix to specify the variable
directly as a float, rather than casting.

Float Underflow Versus Values Near Zero
The definition of the word "underflow" differs between the ANSI standard
and the ANSI/IEEE 754-1985 standard. According to the former definition,
underflow occurs when a number is sufficiently negative for its type not to

4-19

4 Check Descriptions for C++ Code

be capable of representing it. According to the latter, underflow describes
the erroneous representation of a value close to zero due to the limits of its
representation.

Polyspace verifications apply the former definition.

(The latter definition does not impose the raising of an exception as a result
of an underflow. By default, processors supporting this standard permit the
deactivation of such exceptions.)

Consider the following example.

1 #define FLT_MAX 3.40282347e+38F // maximum representable float found in
2 #define FLT_MIN 1.17549435e-38F // minimum normalised float found in <fl
3
4 void main(void)
5 {
6 float zer_float = FLT_MIN;
7 float min_float = -(FLT_MAX);
8
9 zer_float = zer_float * zer_float; // No check underflow near zero. VO
10 min_float = -min_float * min_float; // OVFL ERROR: underflow checked
11
12 }

Constant Overflow
Consider the following example, which would cause an overflow.

int x = 0xFFFF; /* OVFL */

The table that follows shows three types of constants with corresponding
lists of data types. The data type given to a constant is the first data type
from the corresponding list that can accommodate the constant value. (See
“Predefined Target Processor Specifications” for information about the size
of a type depending on the target.)

Decimal int , long , unsigned long

Hexadecimal int, unsigned int, long, unsigned long

Float double

4-20

OVFL – Scalar and Float Overflow

For example, (assuming 16-bit target) the data types for the following values
are:

5.8 double

6 int

65536 long

0x6 int

0xFFFF unsigned int

5.8F float

65536U unsigned int

The option -ignore-constant-overflows allows the user to bypass this
limitation and consider the line

int x = 0xFFFF; /* OVFL */

as

int x = -1;

instead of 65535, which does not fit into a 16-bit integer (–32768 to 32767).

4-21

4 Check Descriptions for C++ Code

SHF – Shift Operations

In this section...

“Shift Amount is Outside its Bounds: SHF” on page 4-22

“Left Operand of Left Shift is Negative: SHF” on page 4-23

Shift Amount is Outside its Bounds: SHF
Check to establish that a shift (left or right) is not greater than the size of
integer type (int and long int). The range of allowed shift depends on the
target processor, for example, 16 bits on c-167 and 32 bits on i386 for int.

C++ Example

1 extern int random_value(void);

2

3 class Shift {

4 public:

5 Shift(int val) : k(val){};

6 void opShift(int x, int l){

7 k = x << l; // SHF error: scalar shift amount is outside its bounds[0..31]

8 }

9 void opShiftSup(int x, int l){

10 k = x >> l; // SHF error: scalar shift amount is outside its bounds[0..31]

11 }

12 void opShiftUnsigned(unsigned int x, int l){

13 unsigned int v = 1024;

14 v = x >> l; // SHF error: scalar shift amount is outside its bounds[0..31]

15 }

16 protected:

17 int k;

18 };

19

20

21 void main(void)

22 {

23 int m, l = 1024; // 32 bits on i386

24 unsigned u = 1024;

4-22

SHF – Shift Operations

25

26 Shift s(1024);

27

28 if (random_value()) s.opShift(l ,32);

// opShift has dashed, red underlining to indicate propagation of SHF error

29 if (random_value()) s.opShiftUnsigned(u ,32);

// opShiftUnsigned has dashed, red underlining to indicate propagation of SHF error

30 if (random_value()) s.opShiftSup(l ,32);

// opShiftUnsigned has dashed, red underlining to indicate propagation of SHF error

31

32 }

Explanation
On lines 7, 10, and 14, the shifts are greater than the integer size.

Left Operand of Left Shift is Negative: SHF
Check to establish whether the operand of a left shift is a signed number.

C++ Example

1 extern int random_value(void);

2

3 class Shift {

4 public:

5 Shift(){};

6 int operationShift(int x, int y){

7 return x << 1; // SHF Error: left operand of left shift is negative

8 }

9 };

10

11

12 void main(void)

13 {

14 Shift* s = new Shift();

15

16 if (random_value())

17 s->operationShift(-200,1);

4-23

4 Check Descriptions for C++ Code

// operationShift has dashed, red underlining to indicate propagation of SHF error

18 }

Explanation
As signed number representation is stored in the higher order bit, you cannot
left-shift a signed number without losing sign information.

Note The option -allow-negative-operand-in-shift allows explicitly
signed numbers on shift operations. If you use this option when verifying the
example, the red check at line 7 becomes a green check.

4-24

NNT – Pointer of function Not Null

NNT – Pointer of function Not Null
This check verifies that the this pointer is null during call of a member
function.

C++ Example

1 #include <new>
2 static volatile int random_int = 0;
3
4 class Company
5 {
6 public:
7 Company(int numbClients):numberClients(numbClients){};
8 void newClients (int numb) {
9 numberClients = numberClients + numb;
10 }
11 protected:
12 int numberClients;
13 };
14
15 void main (void)
16 {
17 Company *Tech = 0;
18
19 if (random_int)
20 Tech->newClients(2); // NNT ERROR: [this-pointer of
newClients is null]
21
22 Company *newTech = new Company(2);
23 newTech->newClients(1); // NNT Verified: [this-pointer
of newClients is not null]
24
25 }
26

Explanation
Polyspace verifies that all functions, virtual or not virtual, by a direct calling,
and through pointer calling are never called with a null this-pointer.

4-25

4 Check Descriptions for C++ Code

In the above example, a pointer to a Company object is declared and initialized
to null. When the newClients member function of the Company class is called
(line 20), Polyspace detects that the class object is a null pointer.

On the new allocation at line 22, as standard new operator returns an
initialized pointer or raises an exception, the this-pointer is considered as
correctly allocated at line 23.

4-26

CPP – C++ Specific Checks

CPP – C++ Specific Checks

In this section...

“Positive Array Size: CPP” on page 4-27

“Incorrect typeid Argument: CPP” on page 4-28

“Incorrect dynamic_cast on Pointer: CPP” on page 4-30

“Incorrect dynamic_cast on Reference: CPP” on page 4-31

Positive Array Size: CPP
This check verifies that the array size is always a non-negative value. In the
following example, the array is defined with a negative value by a function
call.

C++ Example

1 static volatile int random_int = 1;

2 static volatile unsigned short int random_user;

3

4 class Licence {

5 public:

6 Licence(int nUser);

7 void initArray();

8 protected:

9 int numberUser;

10 int (*array)[2];

11 };

12

13 Licence::Licence(int nUser) : numberUser(nUser) {

14 array = new int [numberUser][2]; // CPP error: array size is not strictly positive

15 initArray();

16 }

17

18 void Licence::initArray() {

19 for (int i = 0; i < numberUser; i++) {

20 array[i][2]=0;

21 }

4-27

4 Check Descriptions for C++ Code

22 };

23

24 void main (void)

25 {

26 if (random_int && random_user != 0)

27 Licence FirmUnknown (-random_user);

// FirmUnknown has dashed, red underlining to indicate propagation of CPP error

28 }

Explanation
At line 14, where the dimension of array is defined by [numberUser][2],
the value of the array size is checked. However, the numberUser variable is
always negative. Polyspace verification detects this error and displays the
following message:

CPP error: array size is not strictly positive

Code sequence for probable cause:

2 volatile variable declaration random_user

27 formal argument number 1 (nuUser) of call to function Licence::Licence(int)

13 assignment

14 ! PAS_doc.Licence::Licence(int).CPP

Incorrect typeid Argument: CPP
Check to establish whether a typeid argument is not a null pointer dereference.
This check only occurs using typeid function declared in stl library <typeinfo>.

C++ Example

1 #include <typeinfo>

2

3 static volatile int random_int=1;

4

5 class Form

6 {

7 public:

8 Form (){};

9 virtual void trace(){};

4-28

CPP – C++ Specific Checks

10 };

11

12 class Circle : public Form

13 {

14 public:

15 Circle() : Form () {};

16 void trace(){};

17 };

18

19

20 int main ()

21 {

22

23 Form* pForm = 0 ;

24 Circle *pCircle = new Circle();

25

26 if (random_int)

27 return (typeid(Form) == typeid(*pForm)); // CPP ERROR:

[incorrect typeid argument]

28 if (random_int)

29 return (typeid(Form) == typeid(*pCircle)); // CPP Verified:

[typeid argument is correct]

30 }

31

32

33

34

Explanation
In this example, the pForm variable is a pointer to a Form object and
initialized to a null pointer. Using the typeid standard function, an exception
is raised. In fact here, the typeid parameter of an expression obtained by
applying the unary "*" operator is a null pointer leading to this red error.

At line 29, *pCircle is not null and typeid can be applied.

4-29

4 Check Descriptions for C++ Code

Incorrect dynamic_cast on Pointer: CPP
Check to establish when only valid pointer casts are performed through
dynamic_cast operator. +

C++ Example

1 #include <new>
2 static volatile int random = 1;
3
4 class Object {
5 protected:
6 static Object* obj;
7 public:
8 virtual ~Object() {}
9 };
10
11 class Item : Object {
12 private:
13 static Item* item;
14 public:
15 Item();
16 };
17
18 Object* Object::obj = new Object;
19
20 Item::Item() {
21 if (obj != 0) {
22 item = dynamic_cast<Item*>(obj); // CPP ERROR: [incorrect
dynamic_cast on pointer (verification continue using a null pointer)]
23 if (item == 0) { // here analyzed and reachable code
24 item = this;
25 }
26 }
27 }
28
29 void main()
30 {
31 Item *first= new Item();
32 }

4-30

CPP – C++ Specific Checks

Explanation
Only the dynamic casting between a subclass and its upclass is authorized.
So, the casting of Object object to a Item object is an error on dynamic_cast at
line 21, because Object is not a subclass of Item.

Behavior follows ANSI C++ standard, in sense that even if dynamic_cast
is forbidden, verification continue using null pointer. So at line 22, item is
considered as null and assigned to this at line 23.

Note This is only check where we can have another color after a red.
It is not the case for a dynamic_cast on a reference.

Incorrect dynamic_cast on Reference: CPP
Check to establish when only valid reference casts are performed through
dynamic_cast operator.

C++ Example

1 #include <new>
2 static volatile int random = 1;
3 class Object {
4 protected:
5 static Object* obj;
6 public:
7 virtual ~Object() {}
8 };
9
10 class Item : public Object {
11 private:
12 static Item* item;
13 public:
14 Item& get_item();
15 Item& other_item();
16 };

4-31

4 Check Descriptions for C++ Code

17
18 Object* Object::obj = new Object;
19
20 Item& Item::get_item() {
21 Item& ref = dynamic_cast<Item&>(*Object::obj);
// CPP Error: incorrect dynamic_cast on reference
22 *item = ref;
// unreachable code
23 }
24
25 void main ()
26 {
27 Item * first= new Item();
28 if (random)
29 first->get_item();
// get_item has dashed, red underlining to indicate propagation of dynamic_
30 Object &refo = dynamic_cast<Object&>(first->other_item());
// CPP Verified: [dynamic_cast on reference is correct]
31 }

Explanation
Only the dynamic casting between a subclass and its upclass is authorized.
So, the casting of reference Object object to a reference Item object is an error
on dynamic_cast at line 21, because Object is not a subclass of Item.

The verification stops at line 21 and the error is propagated to line 29. The
tooltip for get_item shows:

A problem occurs during the execution of call to function DCTR_doc.Item::get_item().

See check CPP at DCTR_doc.cpp line 21 ...

...

The behavior is different with a dynamic_cast on a pointer.

4-32

FRV – Function Returns a Value

FRV – Function Returns a Value
Check to establish whether function returns a value when a value is expected.

C++ Example

1 static volatile int rand;

2

3 class function {

4 public:

5 function() { rep = 0; }

6 int reply(int msg) { // FRV green: function returns a value

7 if (msg > 0) return rep;

8 };

9

10 int reply2(int msg) { // FRV Error: function does not return a value

11 if (msg > 0) return rep;

12 };

13

14 int reply3(int msg) { // FRV Warning: function may not return a value

15 if (msg > 0) return rep;

16 };

17

18 protected:

19 int rep ;

20 };

21

22 void main (void){

23

24 int ans;

25 function f;

26

27 if (rand)

28 ans = f.reply(1);

29

30 else if (rand)

31 ans = f.reply2(0); // reply2 has dashed, red underlining to indicate propagation of

32 else

33 f.reply3(rand);

4-33

4 Check Descriptions for C++ Code

34 }

Explanation
Variables are often initialized using the return value of functions. However,
in the example, the return value is not initialized for all input parameter
values. Therefore, the target variable is not properly initialized with a valid
return value.

4-34

IDP – Illegal Dereferenced Pointer

IDP – Illegal Dereferenced Pointer

In this section...

“Pointer is Outside its Bounds: IDP” on page 4-35

“Understanding Addressing” on page 4-36

“Understanding Pointers” on page 4-40

Pointer is Outside its Bounds: IDP
Check to establish whether a reference refers to a valid object (whether the
dereferenced pointer is still within the bounds of the pointed object).

C++ Example

1 #define TAILLE_TAB 1024

2

3 typedef int tab[TAILLE_TAB];

4

5 class Array {

6 public:

7 Array(tab a){

8 p = a;

9 initArray();

10 }

11 void initArray(){

12 int index;

13 for (index = 0; index < TAILLE_TAB ; index++, p++) {

14 *p = 0;

15 }

16 }

17 void changeNextElementWithValue(int i){

18 *p = i; // IDP Error: pointer is outside its bounds

19 }

20

21 private:

22 int *p;

23 };

4-35

4 Check Descriptions for C++ Code

24

25

26 void main(void)

27 {

28 tab t;

29

30 Array a(t);

31 a.changeNextElementWithValue(1);

// changeNextElementWithValue has dashed, red underling to indicate propagation of IDP

32 }

Explanation
The pointer p is initialized to point to the first element of tab at line 8. When
the loop ends, p:

...

points to 4 bytes at offset 4096 in buffer of 4096 bytes, so is outside bounds

...

For more information, see:

• “Understanding Addressing” on page 4-36

• “Understanding Pointers” on page 4-40

Understanding Addressing

• “Hardware Registers” on page 4-36

• “NULL pointer” on page 4-38

• “Comparing addresses” on page 4-39

Hardware Registers
Many code verifications exhibit orange out of bound checks with respect to
accesses to absolute addresses and/or hardware registers.

(Also refer to the discussion on Absolute Addressing)

4-36

IDP – Illegal Dereferenced Pointer

Here is an example of what such code might look like:

#define X (* ((int *)0x20000))
X = 100;
y = 1 / X; // ZDV check is orange because X ~ [-2^31, 2^31-1] permanently.

// The pointer out of bounds check is orange because 0x20000
// may address anything of any length
// NIV check is orange on X as a consequence

3 void main (void)
4 {
5 int y;
6
7 X = 100;
8 y = 1 / X;
9
10 }

int *p = (int *)0x20000;
*p = 100;
y = 1 / *p; // ZDV check is orange because *p ~ [-2^31, 2^31-1] permanently

// The pointer out of bounds is orange because 0x20000
// may address anything of any length
// NIV check on *p is orange as a consequence

This can be addressed by defining registers as regular variables:

4-37

4 Check Descriptions for C++ Code

Replace With

#define X int X;

int *p; int _p;
#define p (&_p)

Note Check that the chosen
variable name (p in this example)
does not already exist

int *p; volatile int _p;
int *p = &_p;

NULL pointer
Consider the following NULL address:

#define NULL 0

• It is illegal to dereference this 0 value

• 0 is not treated as an absolute address.

*NULL = 100; // produces a red Illegal Dereference
Pointer (IDP)

Assuming these declarations:

int *p = 0x5;
volatile int y;

and these definitions:

#define NULL 0
#define RAM_MAX ((int *)0xffffffff)

consider the code snippets below:

While (p != (void *)0x1)

4-38

IDP – Illegal Dereferenced Pointer

p--; // terminates

0x1 is an absolute address, it can be reached and the loop terminates

for (p = NULL; p <= RAM_MAX; p++)
{
*p = 0; // illegal dereference of pointer

}

At the first iteration of the loop p is a NULL pointer. Dereferencing a NULL
pointer is forbidden.

While (p != NULL)
{
p--;
*p = 0; // Orange dereference of a pointer

}

When p reaches the address 0x0, there is an attempt to considered it as an
absolute address In effect, it is an attempt to dereference a NULL pointer –
which is forbidden. Note that in this case, the check is orange because the
execution of the code here is ok (green) until 0x0 is reached (red)

The best way to address this issue depends on the purpose of the function.

• Thanks to the default behavior of Polyspace verification, it is easy to
automatically stub a function whose purpose is to copy data from/to RAM
or to compute a checksum on RAM.

• If a function is supposed to copy calibration data, it should also be stubbed
automatically.

• If the purpose of a function is to map EEPROM data to global variables,
then a manually written stub is required to assign initial values to the
global variables.

Comparing addresses
Polyspace verification only deals with the information referred to by a pointer,
and not the physical location of a variable. Consequently it does not compare
addresses of variables, and makes no assumption regarding where they are
located in memory.

4-39

4 Check Descriptions for C++ Code

Consider the following two examples of Polyspace verification
behavior:

int a,b;
if (&a > &b) // condition can be true and/or false
{ } // both branches are reachable
else
{ } // both branches are reachable

and

int x,z;
void main(void)
{ int i;
x = 12;
for (i=1; i<= 0xffffffff; i++)
{
*((int *)i) = 0;

}
z = 1 / x; // ZDV green check because Polyspace doesn't consider any

// relationship between x and its address
}

“x” is aliased by no other variable. No pointer points to “x” in this example,
so as far as the Polyspace verification is concerned, “x” remains constantly
equal to 12.

Understanding Pointers
Polyspace verification doesn’t analyze anything which would require the
physical address of a variable to be taken into account.

• Consider two variables x and y. Polyspace verification will not make a
meaningful comparison of “&x” (address of x) and “&y”

• So, the Boolean (&x < &y) can be true or false as far as Polyspace
verification is concerned.

However, Polyspace verification does keep track of the pointers that point to
a particular variable.

4-40

IDP – Illegal Dereferenced Pointer

• So, if ptr points to X, *ptr and X will be synonyms.

• “How does malloc work for Polyspace verification?” on page 4-41

• “Structure Handling — Array Conversions: COR” on page 4-41

• “Structure Handling — Mapping a Small Structure into a Bigger One”
on page 4-42

How does malloc work for Polyspace verification?
Polyspace verification models malloc, such that both the possible return
values of a null pointer and the requested amount of memory are taken into
account.

Consider the following example.

void main(void)
{
char *p;
char *q;
p = malloc(120);
q = p;
*q = 'a'; // results in an orange dereference check

}

This code will avoid the orange dereference:

void main(void)
{
char *p;
char *q;
p = malloc(120);
q = p;
if (p!= NULL)
*q = 'a'; // results in a green dereference check

}

Structure Handling — Array Conversions: COR
Check to establish whether a small array is mapped onto a bigger one through
pointer cast.

4-41

4 Check Descriptions for C++ Code

C++ Example.

1 typedef int Big[100];
2 typedef int Small[10];
3 typedef short EquivBig[200];
4
5 Small smalltab;
6 Big bigtab;
7
8 extern int random_val();
9
10 void main(void)
11 {
12
13 Big * ptr_big = &bigtab;
14 Small * ptr_small = &smalltab;
15
16 if (random_val()){
17 Big *new_ptr_big = (Big*)ptr_small; // COR ERROR:
array conversion must not extend range
18 }
19
20 if (random_val()){
21 EquivBig *ptr_equivbig = (EquivBig*)ptr_big;
22 Small *ptr_new_small = (Small*)ptr_big; // COR Verified
23 }
24 }

Explanation. In the example above, a pointer is initialized to the Big array
with the address of a the Small array. This is not legal since it would be
possible to dereference this pointer outside of the Small array. Line 22 shows
that the mapping of arrays with same length and different prototypes is
authorized.

Structure Handling — Mapping a Small Structure into a Bigger
One
For example, if p is a pointer to an object of type t_struct and it is initialized
to point to an object of type t_struct_bis whose size is less than the size of
t_struct, it is illegal to dereference p because it would be possible to access

4-42

IDP – Illegal Dereferenced Pointer

memory outside of t_struct_bis. Polyspace software prompts you to investigate
further by means of an orange check. See the following example.

1 #include <malloc.h>
2
3 typedef struct {
4 int a;
5 union {
6 char c;
7 float f;
8 } b;
9 } t_struct;
10
11 void main(void)
12 {
13 t_struct *p;
14
15 // optimize memory usage
16 p = (t_struct *)malloc(sizeof(int)+sizeof(char));
17
18 p->a = 1; // IDP Warning: reference may not refer to a
valid object
19
20 }

4-43

4 Check Descriptions for C++ Code

COR – Correctness Condition

In this section...

“Function Pointer Does Not Point to a Valid Function: COR” on page 4-44

“Scalar Overflow on Division (/) Operation: COR” on page 4-47

Function Pointer Does Not Point to a Valid Function:
COR
This is a check to establish whether a function pointer points to a valid
function or a function with a valid prototype. The software checks, for
example, whether:

• The pointer points to a function.

• Each argument passed to a function matches the corresponding argument
in the function prototype.

• The number of arguments passed to a function matches the number of
arguments in the function prototype.

• The return type passed to a function pointer matches the return type
declared in the function prototype.

C++ Example

1 typedef void (*CallBack)(void *data);

2

3 struct {

4 int ID;

5 char name[20];

6 CallBack func;

7 } funcS;

8

9 float fval;

10

11 void main(void)

4-44

COR – Correctness Condition

12 {

13 CallBack cb =(CallBack)((char*)&funcS + 24 * sizeof(char));

14

15 cb(&fval);

16 // Red COR: function pointer does not point to a valid function

17 }

Explanation
In the example, func has a prototype that conforms to the declaration for
CallBack. Therefore, func is initialized to point to the NULL function
through the global declaration of funcS.

Verification generates a red COR check for cb (line 15). The Check Details
pane gives the reason:

...

pointer does not point to any function

...

C++ Example

1 static volatile int random = 1;

2

3 int f(float f) { return 0; }

4 int g(int i) { return i; }

5

6 typedef int (*func_int)(int);

7

8 func_int ftab = (func_int)f;

9

10 void badTab(int i) {

11 ftab(++i) ;

12 // Red COR: function pointer does not point to a valid function

13

14 }

15

16 int main()

17 {

4-45

4 Check Descriptions for C++ Code

18 int idx = 0;

19

20 for (int i = 9; i < 10; ++ i) {

21 if (random)

22 badTab(++idx);

23 // In Source view, badTab displayed with red, dash-underlining to highlight problem

24 }

25 }

Explanation
In this example, ftab is a pointer to a function that expects a float input
argument. However, the input argument is an int.

Verification generates a red COR check for ftab (line 11). The Check Details
pane gives the reason:

...

pointer is not null

pointer points to badly-typed function: f

...

C++ Example

1 extern int random_value(void);

2

3 typedef int (*t_func_2)(int);

4 typedef int (*t_func_2b)(int,int);

5

6 int foo_nb(int x)

7 {

8 if (x%2 == 0)

9 return 0;

10 else

11 return 1;

12 }

13

14 void main(void)

15 {

4-46

COR – Correctness Condition

16 t_func_2b ptr_func;

17 int i = 0;

18

19 ptr_func = (t_func_2b)foo_nb;

20 if (random_value())

21 i = ptr_func(1,2);

22 // Red COR: function pointer does not point to a valid function

23 }

Explanation
In this example, ptr_func is a pointer to a function that takes two arguments.
However, the function pointer is initialized to point to a function that takes
only one argument.

Verification generates a red COR check for ptr_func (line 21). The Check
Details pane gives the reason:

...

- error when calling function foo_nb: wrong number of arguments (call has 2 but

function expects 1)

...

Scalar Overflow on Division (/) Operation: COR
This is a check to establish whether the value returned from a division
operation (/) overflows its declaration.

C++ Example

1 #define MAX_INT 2147483647
2 #define MIN_INT (-MAX_INT-1)
3
4 void foo(void)
5 {
6 int a, b, c;
7 a = MIN_INT;
8 b = -1;
9 c = a/b; // COR error: operation [/] on scalar overflows
(result is always strictly greater than MAX_INT32)

4-47

4 Check Descriptions for C++ Code

10 }

Explanation
In this example, a is MIN_INT, so MIN_INT / -1 is equal to MAX_INT+1. This
causes an overflow when c is assigned to an int32.

This error occurs on a division, so it is assigned a COR check.

4-48

NIP – Non-Initialized Pointer

NIP – Non-Initialized Pointer
Check to establish whether a reference is initialized before being dereferenced.

C++ Example

1 class declare
2 {
3 public:
4 declare(int* p):pointer(p){};
5 int changeValue(int val){*pointer = 0;};
6 protected:
7 int* pointer;
8 };
9
10 void main(void)
11 {
12 int* p;
13 declare newPointer(p); // NIP ERROR:
reference is not initialized

14 newPointer.changeValue(0);
15 }

Explanation
As p is not initialized, the line 5 (*pointer = 0) would overwrite an unknown
memory cell (corresponding to the unreachable gray code on "*").

4-49

4 Check Descriptions for C++ Code

EXC – Exception Handling

In this section...

“Function throws: EXC” on page 4-50

“Call to Throws: EXC” on page 4-52

“Destructor or Delete Throws: EXC” on page 4-54

“Main, Tasks or C Library Function Throws: EXC” on page 4-56

“Exception Raised is Not Specified in the Throw List: EXC” on page 4-58

“Throw During Catch Parameter Construction: EXC” on page 4-60

“Continue Execution in __except: EXC” on page 4-62

Function throws: EXC
Check to verify that a function never raises an exception for every returned
values.

C++ Example

1 #include <vector>
2
3 static volatile int random_int = 1;
4 class error{};
5
6 class InitVector
7 {
8 public:
9 InitVector (int size) {
10 sizeVector = size;
11 table.resize(sizeVector);
12 Initialisation();
13 };
14 void Initialisation ();
15 void reSize(int size);
16 int getValue(int number) throw (error);
17 int returnSize();
18 private:

4-50

EXC – Exception Handling

19 int sizeVector;
20 vector<int> table;
21 };
22
23 void InitVector::Initialisation() { // EXC Warning: [functions
may throw]
24 int i;
25 for (i = 0; i < table.size(); i++){
26 table[i] = 0;
27 }
28 if (random_int) throw i;
29 }
30
31 void InitVector::reSize(int sizeT) {
32 table.resize(sizeT);
33 sizeVector = table.size();
34 }
35
36 int InitVector::getValue(int number) throw (error) { // EXC ERROR:
[function throws (verification jumps to enclosing handler)]
37 if (number >= 0 && number < sizeVector)
38 return table[number];
39 else throw error();
40 }
41
42 int InitVector::returnSize() { // EXC Verified: [function
does not throw]
43 return table.size();
44 }
45
46 void main (void)
47 {
48 InitVector *vectorTest = new InitVector(5);
49
50 if (random_int)
51 vectorTest->returnSize();
52
53 if (random_int)
54 vectorTest->getValue(5); // EXC ERROR: [call to getValue
throws (verification jumps to enclosing handler)]

4-51

4 Check Descriptions for C++ Code

55 }

Explanation
The class InitVector allows to create a new vector with a defined size. The
resize member function allows to change the size, without any size limit.
returnSize returns the vector’s size, and no exception can be thrown. A green
check is displayed for this function: [function does not throw].

The getValue function returns the array’s value for a given index. If the
parameter is outside vector bounds, an exception is raised. For a vector’size of
5 elements, valid index are [0..4]. At line 53, the programmers tries to access
the fifth element table[5]. An exception is raised and Polyspace displays a
red message.

Polyspace Verfier tests functions that raises exception or no, with void or
no-void type:

• always: function throws (verification jumps to enclosing handler)

• never: function does not throw

• sometimes: function may throw

When this check happens, a propagation to caller is made with another
exception check [call to <name> throws] (see line 53).

Call to Throws: EXC
Check to verify that a function call raises or not an exception.

C++ Example

1 static volatile int random_int =1 ;
2
3 class error{};
4
5 class A
6 {
7 public:

4-52

EXC – Exception Handling

8 A() {value=9;};
9 int badReturn() throw (int);
10 int goodReturn() throw (error);
11 protected:
12 int value;
13 };
14
15 int A::badReturn() throw (int) { // EXC ERROR: [function
throws (verification jumps to enclosing handler)]
16 if(!value)
17 return value;
18 else
19 throw 2;
20 };
21
22 int A::goodReturn() throw (error) { // EXC Verified: [function
does not throws]
23 int p = 7;
24 if (p>0)
25 return value;
26 else
27 throw error();
28 };
29
30 void main (void)
31 {
32 A* a = new A();
33 if(random_int)
34 a->badReturn(); // EXC ERROR: [call to badRetrun throws
(verification jumps to enclosing handler)]
35 if(random_int)
36 a->goodReturn(); // EXC Verified: [call to goodRetrun
does not throw]
37 }

Explanation
In the first call, Polyspace proposes to caller that the function always raises
an exception because member variable value is always different from 0.

4-53

4 Check Descriptions for C++ Code

In the second call, Polyspace verification checks that no throw has been made
in the function because the conditional test at line 24 is always true.

Most of the time, the [call to <name> throws] is associated to [function
throws] check.

Destructor or Delete Throws: EXC
Check to establish whenever an exception is “thrown” and not “caught” in a
destructor or during a delete operation.

C++ Example

1 #include <math.h>

2 using namespace std;

3 volatile unsigned int random_int = 1 ;

4

5 class error{};

6

7 class Rectangle

8 {

9 public:

10 Rectangle(){};

11 Rectangle (unsigned int longueur, unsigned int large):

longueurRect(longueur),largeRect(large){};

12

13 virtual ~Rectangle(){ // EXC Warning: possible throw during destructor or delete

14 if (!random_int)

15 throw error();

16 };

17

18 virtual double calculArea() {

19 return longueurRect * largeRect;

20 };

21

22 protected:

23 unsigned int longueurRect;

24 unsigned int largeRect;

25 };

26

4-54

EXC – Exception Handling

27 class Cube : public Rectangle

28 {

29 public:

30 Cube():cote(3){};

31 ~Cube(){ // EXC ERROR: throw during destructor or delete

32 if(random_int>=0)

33 throw error();

34 };

35 double calculArea(){

36 return pow(cote,cote);

37 };

38 protected:

39 int cote ;

40 };

41

42 void main (void)

43 {

44 try {

45 Rectangle* form1 = new Rectangle(10,2);

46 double k = form1->calculArea();

47

48 Cube* form2 = new Cube;

49 double l = form2->calculArea();

50

51 delete form1;

52 delete form2;

// delete on line 52 has red, dashed underlining to

// indicate propagation of NTC error

53 }

54 catch (error){

55 //raised when an error occurs in a destructor

56 }

57 catch (...){}

58 }

4-55

4 Check Descriptions for C++ Code

Explanation
In class Cube’s destructor at line 31, an error is raised when random_int is
greater than 0. As random_int was declared as a volatile unsigned int,
this condition is always true.

At line 13, in the destructor of class Rectangle, the test on the random_int
value may be true when it is different from 0. Thus, an exception might be
raised in the destructor, and an orange warning is displayed.

Destructors are called during stack unwinding when an exception is thrown.
In this case any exception thrown by a destructor would cause the program
to terminate. Therefore it is better programming to catch exceptions in
destructors.

Main, Tasks or C Library Function Throws: EXC
Check that functions used at C level, in a task or in main do not raise
exceptions.

C++ Example

1 #include <cstdlib>
2 #include <iostream>
3 static volatile int random_int = 1;
4
5 extern "C" {
6 int compare (const void * a, const void * b) {
// EXC Verifeid:
[main, task or C library function does not throw]
7 return (*(int*)a - *(int*)b);
8 }
9 int c_compare_bad (const void *k, const void *e) {
// EXC ERROR:
[main, task or C library function throws]
10 throw 1;
11 }
12 };
13
14 typedef int arrayT[5];

4-56

EXC – Exception Handling

15
16 class arrayToRange
17 {
18 public:
19 arrayToRange(arrayT* a) :tab(a) {};
20 arrayT* returnTabInOrder() {
21 qsort(*tab, 5, sizeof(int), compare);
22 return tab;
23 };
24 arrayT* returnTabInOrderBad() {
25 qsort(*tab, 5, sizeof(int), c_compare_bad);
26 return tab;
27 };
28 protected:
29 arrayT* tab;
30 };
31
32 void main(void) // EXC Verified: [main, task or C library
function does not throw]
33 {
34 try
35 {
36 arrayT tabInit = {1,3,4,2,5};
37 arrayT* table = &tabInit;
38 arrayToRange ArrayTest(table);
39 ArrayTest.returnTabInOrderBad(); // No jump to enclosing
handler
40 ArrayTest.returnTabInOrder();
41 }
42 catch (...) { // gray code
43 cout << "error raised:" << "bye"; // gray code
44 }
45 }

Explanation
In this example, we called a C stubbed function, qsort defined in the include
file cstlib, which returns a sorted array of integers. Two functions, defined in
a class called arrayToRange, call this qsort function:

4-57

4 Check Descriptions for C++ Code

• The first one, returnTabInOrder, calls qsort, with a C function pointer as
third parameter, which can not raise an exception. So Polyspace software
displays a green message (line 6).

• The second one, returnTabInOrderBad, uses a C function pointer which
always raises an exception. Polyspace software displays a red message
on the C function (line 9).

Limitation: even if c_compare_bad function always raise an exception,
Polyspace verification does not propagate to enclosing handler. Indeed at line
39, all is green and the verification continue even if call is surrounded by a
try/catch leading to gray code in catch block.

Exception Raised is Not Specified in the Throw List:
EXC
Check to determine whether a function has thrown a non-authorized
exception.

C++ Example

1 #include <string>

2

3 using namespace std;

4

5 int negative_balance = -300;

6

7 class NotPossible

8 {

9 public:

10 NotPossible(const string & s) : Error_Message(s) { };

11 ~NotPossible(){};

12 string Error_Message;

13 };

14

15 class Account

16 {

17 public:

18 Account(long accountInit):account(accountInit) {}

19 void debit (long amount) throw (int, char);

4-58

EXC – Exception Handling

20 long getAccount () { return account; };

21 protected:

22 long account;

23 };

24

25 void Account::debit(long amount) throw (int, char) {

// EXC Error: exception raised is not specified in the throw list

26 if ((account - amount) < negative_balance)

27 throw NotPossible ("error");

28 account = account - amount;

29 }

30

31 void main (void)

32 {

33 try {

34 Account *James = new Account(12000);

35 James -> debit(13000);

// debit has red, dashed underlining to indicate propagation of NTC error:

propagation of not specified exception

36 long total = James -> getAccount();

37 }

38 catch (NotPossible&){}

39 catch (...){};

40 }

41

Explanation
In the example, the debit function of the Account class can throw the
specified exception. This function can only catch the int and char exceptions.
The bank has authorized an overdraft of 300 euros. The James account is
created with an initial balance of 12000 Euros. At line 35, his account is
debited by 13000. In the debit function, the if condition (line 26) is true.
Therefore, a NotPossible exception is raised. Unfortunately, this exception
type is not allowed within the throw list at line 25 even if the catch operand
allows it. Therefore, Polyspace verification detects an error.

4-59

4 Check Descriptions for C++ Code

Throw During Catch Parameter Construction: EXC
Check to prevent throw during dynamic initialization in constructors and
during initialization of arguments in catch.

C++ Example

1 #include <string>
2
3 static volatile int random_int = 1;
4 static volatile int random_red = 0;
5
6 class error{};
7
8 class NotPossible
9 {
10 public:
11 NotPossible(const NotPossible&) // EXC ERROR: [function
throws (verification jump to enclosing handler)]
12 {
13 throw error();
14 };
15 NotPossible() // NRE ERROR: [function
throws (verification jump to enclosing handler)]
16 {
17 throw NotPossible(7);
18 };
19 NotPossible(int){};
20 ~NotPossible(){};
21 private:
22 string Error_Message;
23 };
24
25 class Test
26 {
27 public:
28 Test(int val) : value(val){};
29 int returnVal(){
30 if (random_int)
31 throw error();

4-60

EXC – Exception Handling

32 else
33 return value;
34 };
35 private:
36 int value;
37 };
38
39 int main() {
40
41 try {
42 Test* T = new Test(1);
43 if (random_red)
44 throw NotPossible(); // EXC ERROR: [call to
NotPossible throws (verification jumps tp enclosing handler)]
45 else
46 T->returnVal();
47 if (random_red) {
48 NotPossible * Npos = new NotPossible(); // EXC
ERROR: [throw during dynamic initialization]
49 }
50 }
51 catch(NotPossible a) {} // EXC ERROR: [throw during
catch parameter conctruction]
52 catch(...) {}
53 }

Explanation
At line 48 of the previous example, during dynamic initialization of Npos, a
call to default constructor NotPossible is made. This constructor raises an
exception leading to the EXC error. Indeed, raising an exception during a
dynamic initialization is not authorized.

In same example at line 51, an exception is caught by the throw coming from
line 44. A variable of type NotPossible is created at line 48 using also same
default constructor. However, this constructor throws an integer exception
leading to red error at line 48.

4-61

4 Check Descriptions for C++ Code

Each catch clause (exception handler) is like a function that takes a single
argument of one particular type. The identifier may be used inside the
handler, just like a function argument. Moreover, the throw of an exception in
a catch block is not authorized.

Continue Execution in __except: EXC
Check to establish whether in a __except catch block the use of MACRO
EXCEPTION_CONTINUE_EXECUTION. This check can only occur using a
“Dialect” on page 1-18.

C++ Example

1
2 #include <windows.h>
3 #include <excpt.h>
4
5 void* data;
6 struct No_Data {};
7
8 void* check_glob() { // EXC ERROR: [function throws
(verification jumps to enclosing handler)]
9 if (!data) throw No_Data(); // EXC ERROR: []
10 return data;
11 }
12
13 int main() {
14 __try {
15 data = 0;
16 check_glob(); // EXC ERROR: [call to check_glob() throws
(verification jumps to enclosing handler)]
17 }
18 __except(data == 0
19 ? EXCEPTION_CONTINUE_EXECUTION // EXC ERROR:
[expression value is EXCEPTION_CONTINUE_EXECUTION]
20 : EXCEPTION_EXECUTE_HANDLER) {
21 data = new (void*); // Gray code
22 }
23 }

4-62

EXC – Exception Handling

Explanation
In this example, the call to function check_glob() throws an exception. This
exception jumps to enclosing handler, in this case the __except block. Using
EXCEPTION_CONTINUE_EXECUTION, it could be possible normally to
continue verification and comes back at line 9 as if exception never happened.
In the example, data is assigned to new value at line 21 in __except block
and no more throw will occur.

Polyspace verification cannot handle this kind of behavior and put a red error
on the EXCEPTION_CONTINUE_EXECUTION keyword since it has found
a path to this instruction. It results gray code at line 21 and at line 10. All
other red errors concern management of the exception: function throws and
call throws].

Note It is possible to match functional behavior using volatile keyword by
replacing code at line 5: volatile void *data;

4-63

4 Check Descriptions for C++ Code

ASRT – User Assertion
Check to establish whether a user assertion is valid. If the assumption
implied by an assertion is invalid, then the standard behavior of the assert
macro is to abort the program. Polyspace verification therefore considers a
failed assertion to be a run-time error.

C++ Example

1 #include <assert.h>
2
3 typedef enum
4 {
5 monday=1, tuesday,
6 wensday, thursday,
7 friday, saturday,
8 sunday
9 } dayofweek ;
10
11 // stubbed function
12 dayofweek random_day(void);
13 int random_value(void);
14
15 void main(void)
16 {
17 unsigned int var_flip;
18 unsigned int flip_flop;
19 dayofweek curDay;
20 unsigned int constant = 1;
21
22 if (random_value()) flip_flop=1; else flip_flop=0;
// flip_flop randomly be 1 or 0
23 var_flip = (constant | random_value());
// var_flip is always > 0
24
25 if(random_value()) {
26 assert(flip_flop==0 || flip_flop==1); // ASRT Verified:
user assertion is verified
27 assert(var_flip>0); // ASRT Verified

4-64

ASRT – User Assertion

28 assert(var_flip==0); // ASRT ERROR:
user assertion fails
29 }
30
31 if (random_value()) {
32 curDay = random_day(); // Random day
of the week
33 assert(curDay > thursday); // ASRT Warning:
User assertion may fail

34 assert(curDay > thursday); // ASRT Verified
35 assert(curDay <= thursday); // ASRT ERROR:
user assertion fails
36 }
37 }

Explanation
In the main, the assert function is used in two different ways:

• To establish whether the values flip_flop and var_flip in the program are
inside the domain which the program is designed to handle. If the values
were outside the range implied by the assert (see line 28), then the progam
would not be able to run properly. Thus they are flagged as run-time errors.

• To redefine the range of variables as shown at line 34 where curDayis
restricted to just a few days. Indeed, Polyspace verification makes the
assumption that if the program is executed without a run-time error at line
33, curDay can only have a value greater than thursday after this line.

4-65

4 Check Descriptions for C++ Code

OOP – Object Oriented Programming

In this section...

“Invalid Pointer to Member: OOP” on page 4-66

“Call of Pure Virtual Function: OOP” on page 4-67

“Incorrect Type for this-pointer: OOP” on page 4-68

Invalid Pointer to Member: OOP
Polyspace verification checks that the pointer to a function member is invalid
or null.

C++ Example

1
2 class A {
3 public:
4 void f() {
5 }
6 };
7
8 int main() {
9
10 void (A::*pf)(void) = &A::f;
11 int (A::*pf2)(void) = (int (A::*)(void))&A::f;
12
13 volatile int random;
14 A a;
15
16 if (random) {
17 int res = (a.*pf2)() ; // RED OOP ERROR [pf2 points to A::f \
that does not return a value]
18 res++;
19 }
20
21 pf = 0;
22 if (random) {

4-66

OOP – Object Oriented Programming

23 (a.*pf)() ; // Red OOP ERROR [pf pointer is null]
24 }
25 }

Explanation
When a function pointer operates on a null pointer to a member value, the
behavior is undefined. In the above example, the pf pointer is declared and
initialized to a null member function. When the function is called (at line 23)
a red error is raised. In addition, the pf2 pointer points to A::f, that does not
return a value, raising another red error at line 17.

Call of Pure Virtual Function: OOP
This check detects a pure virtual function call.

C++ Example

1
2 class Form
3 {
4 public:
5 Form(Form* f){};
6 Form(Form* f, char* title){
7 f->draw(); // OOP Error: [call to pure virtual \
function draw()]
8 };
9 virtual void draw() = 0;
10 };
11
12 class Rectangle : public Form
13 {
14 public:
15 Rectangle(): Form (this, "Rectangle"){} ;
16 void draw();
17 };
18
19 void Rectangle::draw () {
20 Form::draw(); // Draw the rectangle
21 };

4-67

4 Check Descriptions for C++ Code

22
23 void main (void)
24 {
25 Rectangle Rect1;
26 Rect1.draw();
27 }

Explanation
The effect of making a virtual call to a pure virtual function directly or
indirectly for the object being created (or destroyed) from such a constructor
(or destructor) is undefined (see Standard ANSI ISO/IEC 1998 pp. 199).

One Rectangle object is declared: Rect1 calls the constructor (line 15), and so
the Form constructor (line 6) whose the draw() function member is called.
Unfortunately, this function is a pure virtual function. Polyspace verification
points out a warning at line 7.

Incorrect Type for this-pointer: OOP
Check to verify that a member function is associated to the right instance of
a class.

Three principal causes lead to an incorrect this-pointer type:

• An out of bounds pointer access

• A non initialized variable member

• An inadequate cast.

The following example shows the three possible cases.

C++ Example

1 #include <new>
2
3 int get_random_value(void);
4
5 struct A {

4-68

OOP – Object Oriented Programming

6 virtual int f();
7 };
8
9 struct C {
10 virtual int h() { return 7; }
11 };
12
13 void f(void) {
14 struct T {
15 int m_j;
16 C m_field;
17 T() : m_j(m_field.h()) {} // OOP ERROR (initialisation): \
[incorrect this-pointer type of T]
18 } badInit;
19 int r;
20
21
22 r = badInit.m_j;
23 }
24
25 class Bad
26 {
27 public:
28 int i;
29 void f();
30 Bad() : i(0) {}
31 };
32
33
34 class Good
35 {
36 public:
37 virtual void g() {}
38 void h() {}
39 static void k() {}
40 };
41
42 int main()
43 {
44

4-69

4 Check Descriptions for C++ Code

45 A* a = new A;
46 Good *ptr = (Good *)(void *)(new Bad);
47
48 a->f(); // OOP Verified: [this-pointer type of \
A is correct]
49
50 if (get_random_value()) {
51 C* c = new C;
52 ++c;
53 c->h(); // OOP ERROR (out of bounds): \
[incorrect this-pointer type of C]
54 }
55
56 if (get_random_value()) ptr->g(); // OOP ERROR (cast): \
[incorrect this-pointer type of Bad]
57 if (get_random_value()) ptr->h(); // OOP ERROR (cast): \
[incorrect this-pointer type of Bad]
58
59 ptr->k(); // correct call to a static function
60
61 f();
62
63 }

Explanation
At line 17 of the example, Polyspace verification identifies a this-pointer type
problem (OOP category), because of an initialization missing for member
field m_field.

At line 53 of the example, Polyspace verification points out that even if the
function member h is part of the c Class, we are outside the structure. It could
be compared to IDP for simple class.

Finally, lines 56 and 57 show another this-pointer problems: function
members g and h are not part of the Bad Class. Good does not inherited from
Bad. Note that there is no problem with static function member k because it
is only syntaxic.

4-70

NTC – Non-Termination of Call

NTC – Non-Termination of Call

In this section...

“Non Termination of Calls and Loops: Informative Checks” on page 4-71

“Non Termination of Call: NTC” on page 4-73

Non Termination of Calls and Loops: Informative
Checks
NTC and NTL are informative red checks.

• They are the only red checks which can be filtered out, as shown below

• They do not stop the verification

• As with other red checks, code found after them are gray (unreachable)

• These checks can only be red. There are no orange NTL or NTC checks.

• They can reveal a bug, or can simply just be informative

Check Description

NTL In a Non Terminating Loop, the break condition is never met.
Here are some examples.
• while(1) { function_call(); }
Informative NTL.

• while(x>=0) {x++; }
Where x is an unsigned int. This may reveal a bug.

• for(i=0; i<=10; i++) my_array[i] = 10;
Where “int my_array[10];” applies. This red NTL reveals a
bug in the array access, flagged in orange.

• ptr = NULL; for(i=0; i<=100; i++)*ptr=0;
The first iteration of the loop is red, and therefore it is flagged
as an NTL. The “i++” will be gray, because the first iteration
crashed.

NTC Suppose that a function calls f(), and one of the following applies
to f:

4-71

4 Check Descriptions for C++ Code

Check Description

• f contains a red error.

• f contains an NTL.

• f contains an NTC.

• f contains an orange check that is context dependent — either
red or green. In addition, the call makes f fail.

• f is a mathematical function, for example, sqrt or acos, that
has an invalid input parameter.

Verification generates a red NTC check or applies dashed, red
underlining to the function call. For the function call with dashed,
red underlining, the tooltip indicates the location of the actual
error.

Note A sqrt check is only colored if the input parameter is never valid.
For instance, if the variable x may take any value between -5 and 5, then
sqrt(x) has no color.

The list of constraints which cannot be satisfied (found by clicking on the NTC
check) represents the variables that cause the red error inside the function.
The (potentially) long list of variables can help to understand the cause of the
red NTC, as it shows each condition causing the NTC

• where the variable has a given value; and

• where the variable is not initialized. (Perhaps the variable is initialized
outside the set of files under verification).

If know a function is not expected to terminate (such as a loop or an exit
procedure), you can specify the known-NTC (k-NTC) filter is an option. You
will find all the NTCs and their consequences in the k-NTC facility in the
Results Manager perspective, allowing you to filter them.

4-72

NTC – Non-Termination of Call

Non Termination of Call: NTC
Check to establish whether a procedure call returns.

It is not the case when the procedure contains an endless loop or a certain
error, or if the procedure calls another procedure which does not terminate.
In the latter instance, the status of this check is propagated to caller.

Note If you set the Review Level slider to 0, the software does not display
NTC checks on the Results Explorer or Results Summary tab.

C++ Example

1 int cte; // Initialised by default to zero

2

3 int foo(int a) {

4 return 2%a;

// Modulo operation is orange, one call of foo is green, and another is red.

5 }

6

7 int main(void) {

8

9 return foo(7) + foo(cte); // NTC on rightmost call, it passes cte=0

10

11 }

Explanation
In this example, the red NTC check on line 9 is due to the operation on line 4.
The call foo(cte) passes the value zero, resulting in an undefined expression
2%0.

4-73

4 Check Descriptions for C++ Code

NTL – Non Termination of Loop

In this section...

“Non Termination of Loop: NTL” on page 4-74

“Tooltips for NTL Checks” on page 4-76

Non Termination of Loop: NTL
Check to establish whether a loop (for, do-while, while) terminates.

Note If you set the Review Level slider to 0, the software does not display
NTL checks on the Results Explorer or Results Summary tab.

C++ Example

1
2 class NTL {
3 public:
4 NTL();
5 void rte_loop(void);
6 void task (void);
7 void update_alpha(double *a);
8 void send_data(double a);
9 };
10
11 static volatile double _acq =0.0;
12 static volatile int start_ = 0;
13
14
15 typedef void (NTL::*ptask) ();
16
17 extern void launch(ptask);
18
19
20 void NTL::task(void)
21 {

4-74

NTL – Non Termination of Loop

22 double acq, filtered_acq, alpha;
23
24 // Init
25 filtered_acq = 0.0;
26 alpha = 0.85;
27
28 while (1) { // NTL ERROR: [non termination of loop]
29 // Acquisition
30 acq = _acq;
31 // Treatment
32 filtered_acq = acq + (1.0 - alpha) * filtered_acq;
33 // Action
34 send_data(filtered_acq);
35 update_alpha(&alpha);
36 }
37 }
38
39 void NTL::rte_loop(void)
40 {
41 int i;
42 double twentyFloat[20];
43
44 for (i = 0; i <= 20; i++) { // NTL ERROR: propagation \
of OBAI ERROR

45 twentyFloat[i] = 0.0; // OBAI Warning: 20 \
verification with i in [0,19]

46 // and one ERROR with i = 20
47 }
48 }
49
50 NTL::NTL()
51 {
52
53 ptask mytask = &NTL::task;
54 if (start_)
55 launch(mytask);
45 }

4-75

4 Check Descriptions for C++ Code

Explanation
In the example at line 19, the "continuation condition" is always true and the
loop will never exit. Thus Polyspace verification will raise an error. In some
case, the condition is not trivial and may depend on some program variables.
Nevertheless the verification is still able to analyze those cases.

On the other error at line 35, the red OBAI related to the 21th execution of
the loop has been transformed in an orange warning because of the 20 first
verified executions.

Tooltips for NTL Checks
Tooltips provide range information in the Results Manager perspective,
including the number of iterations for loops.

There are 2 possible situations:

• Loops that terminate – A tooltip gives the number of iterations of the
loop. For example, for (i=0; i<10; i++), a tooltip on the for keyword
says Number of iteration(s): 10.

• Non–terminating loops — The NTL check contains information about
the maximum number of iterations that can be done. This number is an
overset of the real number of iterations (which may be lower).

For example:

- Failure at a given iteration, for (i=0; i<10; i++) y = 2 /
(i - 5); — The NTL check on the for keyword says: Number of
iteration(s): 6

This means that the loop fails at the 6th iteration, which can help you
find the orange check that contains the failure.

- Infinite loop x = 0; while (x >= 0) y = 2; — The NTL check on
the for keyword says: Number of iteration(s): 0..?

This means that the loop has an unknown number of iterations (up to
an infinite number). It does not mean that the loop is an infinite loop,
but that it may be an infinite loop. You would also get 0..? on the loop
while (1) { if (random) break; }.

4-76

ABS_ADDR – Absolute Address

ABS_ADDR – Absolute Address
The software generates an orange ABS_ADDR check when an absolute
address is assigned to a pointer. The check is colored orange because the
software has no information about the absolute address and cannot verify, for
example, the address, availability of memory, and initialization of memory.

The software permits memory access to the absolute address after generating
the orange ABS_ADDR check for the first assignment operation. IDP and
NIV checks for memory access operations after the first assignment operation
are green.

Consider the following code.

27 int *p;

28 int x;

29

30 p = (int *)0x32; // Orange ABS_ADDR

31 x = *p; // Green IDP and NIV

32

33 p++;

34 y = *p; // Orange IDP and NIV

35

On line 30, the first assignment of the absolute address to a pointer produces
an orange ABS_ADDR check. The next memory access operation produces
green IDP and and NIV checks.

On line 34, the memory access operation produces orange IDP and NIV
checks. The checks are orange because the accessed memory location is not
covered by an orange ABS_ADDR check.

Note By default, the software displays ABS_ADDR checks on the Results
Explorer or Results Summary tab only if you set the Review Level slider to
All.

4-77

4 Check Descriptions for C++ Code

If you know that the absolute addresses in your code are valid, you can specify
the option -green-absolute-address-checks, which makes all ABS_ADDR
checks green. See “Green absolute address checks” on page 2-58.

4-78

INF – Potential Call

INF – Potential Call
INF checks (potential call to) are informative checks that help to understand
reasoning of Polyspace verification during function calls, constructions and
destructions of objects through

C++ Example

1 #include <iostream>
2 static volatile int random_int = 1 ;
3
4 typedef enum { AOP, UTC, GET } valueKind;
5
6 class SubVal {
7 valueKind val;
8 void init();
9 public:
10 SubVal(valueKind v);
11 virtual ~SubVal() {} // INF informative: \
[operator_delete(void*) is implicitly called]

12
13 virtual void log(const char* msg);
14 valueKind getVal() {return val;};
15 void undef();
16 };
17
18 SubVal::SubVal(valueKind v) : val(v) {
19 init();
20 }
21
22 void SubVal::init() {
23 log("SubVal creation"); // INF informative: \
[SubVal::log(const_char*) is called during construction of SubVal]

24 }
25
26 void SubVal::log(const char* msg) {
27 cout << msg;
28 }
29

4-79

4 Check Descriptions for C++ Code

30 void SubVal::undef() {
31 log("ArithVal destruction"); // INF informative: \
[ArithVal::log(const_char*) is called if this-pointer is of type \
ArithVal]

32 }
33
34 class ArithVal : SubVal {
35 public:
36 ArithVal(double d) : SubVal(GET) {}
37 ~ArithVal();
38 void ArithAdd(double d) {};
39 virtual void log(const char* msg) {
40 cout << getVal();
41 };
42 };
43
44 ArithVal::~ArithVal() {
45 undef();
46 } // INF informative: [SubVal::~SubVal() is implicitly called]
47
48
49
50 void main(void){
51 ArithVal *xVal = new ArithVal(10.0);
52 xVal->ArithAdd(1.0);
53
54 SubVal *eVal = new SubVal(AOP);
55 eVal->log("new"); // INF informative: \
[SubVal::log(const_char*) is called if this-pointer is of type \
SubVal]

56
57 delete xVal; // INF informative: \
[ArithVal::~ArithVal() is called if this-pointer is of type \
ArithVal]

58 delete eVal; // INF informative: \
[SubVal::~SubVal() is called if this-pointer is of type SubVal]

59
60 }

4-80

INF – Potential Call

Explanation
In this example, a base and derived classes are described. From main
program, we create objects, call member functions and delete them.
Associated to each function call, including constructors and destructors,
some informative checks are put giving (potential) call of functions, during
construction and destruction of objects.

Theses checks can only be green or gray.

4-81

4 Check Descriptions for C++ Code

POW (Deprecated)

Note The POW check is deprecated in R2009a and later. The POW check no
longer appears in Polyspace results.

The pow function is now a standard stub, and the POW check has been
replaced by a function call and an NTC error when the power is negative.

Check to establish whether the left operand of the pow mathematical function
declared in <math.h> is positive (directly or in generated constructors or
destructors)

4-82

UNFL (Deprecated)

UNFL (Deprecated)

Note The UNFL check is deprecated in R2010a and later. The UNFL check
no longer appears in Polyspace results. Instead of two separate UNFL and
OVFL checks, a single OVFL check now appears.

Check to establish whether an arithmetic expression underflows. This is a
scalar check with integer type and a float check for floating point expressions.

4-83

4 Check Descriptions for C++ Code

UOVFL (Deprecated)

Note The UOVFL check is deprecated in R2009a and later. The UOVFL
check no longer appears in Polyspace results. Instead of a single UOVFL
check, the results now display two checks, a UNFL and an OVFL.

The check UOVFL only concerns float variables. Polyspace verification
shows an UOVFL when both overflow and underflow can occur on the same
operation.

4-84

5

Approximations Used
During Verification

• “Why Polyspace Verification Uses Approximations” on page 5-2

• “Approximations Made by Polyspace Verification” on page 5-4

• “Limitations of Polyspace Verification” on page 5-9

5 Approximations Used During Verification

Why Polyspace Verification Uses Approximations

In this section...

“What is Static Verification” on page 5-2

“Exhaustiveness” on page 5-3

What is Static Verification
Polyspace software uses static verification to prove the absence of runtime
errors. Static verification derives the dynamic properties of a program
without actually executing it. This differs significantly from other techniques,
such as runtime debugging, in that the verification it provides is not based on
a given test case or set of test cases. The dynamic properties obtained in the
Polyspace verification are true for all executions of the software.

Polyspace verification works by approximating the software under verification,
using representative approximations of software operations and data.

For example, consider the following code:

for (i=0 ; i<1000 ; ++i)
{ tab[i] = foo(i);
}

To check that the variable i never overflows the range of tab a traditional
approach would be to enumerate each possible value of i. One thousand
checks would be required.

Using the static verification approach, the variable i is modelled by its
variation domain. For instance the model of i is that it belongs to the [0..999]
static interval. (Depending on the complexity of the data, convex polyhedrons,
integer lattices and more elaborated models are also used for this purpose).

Any approximation leads by definition to information loss. For instance,
the information that i is incremented by one every cycle in the loop is lost.
However, the important fact is that this information is not required to ensure
that no range error will occur; it is only necessary to prove that the variation
domain of i is smaller than the range of tab. Only one check is required

5-2

Why Polyspace® Verification Uses Approximations

to establish that – and hence the gain in efficiency compared to traditional
approaches.

Static code verification does have an exact solution, but that solution is
generally not practical, as it would generally require the enumeration of all
possible test cases. As a result, approximation is required.

Exhaustiveness
Nothing is lost in terms of exhaustiveness. The reason is that Polyspace
verification works by performing upper approximations. In other words, the
computed variation domain of any program variable is always a superset of
its actual variation domain. The direct consequence is that no runtime error
(RTE) item to be checked can be missed by Polyspace verification.

5-3

5 Approximations Used During Verification

Approximations Made by Polyspace Verification

In this section...

“Volatile Variables” on page 5-4

“Structures with Volatile Fields” on page 5-4

“Absolute Addresses” on page 5-5

“Pointer Comparison” on page 5-5

“Shared Variables” on page 5-5

“Trigonometric Functions” on page 5-6

“Unions” on page 5-7

“Constant Pointer” on page 5-7

“Variable Cast as Void Pointer” on page 5-8

Volatile Variables
Volatile variables are potentially uninitialized and their content is always
full range.

2 int volatile_test (void)
3 {
4 volatile int tmp;
5 return(tmp); // NIV orange: the variable content is full range
[-2^31;2^31-1]
6 }

In the case of a global variable the content would also be full range, but the
NIV check would be green.

Structures with Volatile Fields
In this example, although only the b field is declared as volatile, in practice
any read access to the “a” field will be full range and orange.

2 typedef struct {
3 int a;

5-4

Approximations Made by Polyspace® Verification

4 volatile int b;
5 } Vol_Struct;

Absolute Addresses
Both reading from, and writing to, an absolute address leads to warning
checks on the pointer dereference. An absolute address is considered as a
volatile variable.

Val = *((char *) 0x0F00); // NIV and IDP orange: access to an
absolute address

Pointer Comparison
Polyspace verification is a static tool verifying source code. Memory
management concerns dynamic considerations, and the characteristics of
particular compilers and targets. Polyspace verification therefore doesn’t
consider where objects are actually implanted in memory

5 int *i, *j, k;
6 i = (int *) 0x0F00;
7 j = (int *) 0x0FF0;
8
9 if (i < j) // the condition can be true or false
10 k = 12; // this line is reachable
11 else
12 k = 23; // this line is reachable too.

Its the same situation if “i” and “j” points to real variable

6 i = & one_variable;
7 j = & another_one;
9 if (i < j) // the condition can still be true or false

Shared Variables
At the minimum, a shared variable contains a union of all ranges it can
contain among the application. At the maximum, the variable will be full
range.

12 void p_task1(void)
13 {
14 begin_cs();

5-5

5 Approximations Used During Verification

15 X = 0;
16 if (X) {
17 Y = X; // Verified NIV, although it should be gray
18 assert (Y == 12); // Warning assert, although it should be gray
19 }
20 end_cs();
21 }
22
23 void p_task2(void)
24 {
25 begin_cs();
26 X = 12;
27 Y = X + 1; // Polyspace considers [Y==1] or [Y==13]
28 if (Y == 13)
29 Y = 14;
30 else
31 Y = X - 1 ; // this line should be gray
32 end_cs();
33 }

Trigonometric Functions
With trigonometric functions, such as sines and cosines, verification
sometimes assumes that the return value is bound between the limits of that
function, regardless of the parameter passed to it. Consider the following
example, which uses acos, sin and asin functions.

7 double res;
8
9 res = sin(3.141592654);
10 assert(res == 0.0); // Range is [-1..1]
11
12 res = acos(0.0);
13 assert(res == 0.0); // Range always in [0..pi]
14
15 res = asin(0.0);
16 assert(res == 0.0); // Always gives [0.0]

5-6

Approximations Made by Polyspace® Verification

Unions
In some situations, unions can help you construct efficient code. However,
unions can cause issues for code verification, for example:

• Padding – Padding might be inserted at the end of an union.

• Alignment – Members of structures within a union might have different
alignments.

• Endianness – Whether the most significant byte of a word could be stored
at the lowest or highest memory address.

• Bit-order – Bits within bytes could have both different numbering and
allocation to bit fields.

These issues can cause Polyspace verification to lose precision when structure
unions are considered. In fact, these kinds of implementation are compiler
dependant. Conversions from one type a union to another will cause a loss
of precision on two checks:

• Is the other field initialized? Orange NIV

• What is the content of the other field? Full range

typedef union _u {
int a;
char b[4]; } my_union;
my_union X;

X.b[0] = 1; X.b[1] = 1; X.b[2] = 1; X.b[1] = 1;
if (X.A == 0x1111)
else // both branches are reachable

Constant Pointer
To increase Polyspace precision where pointers are analyzed, replace

const int *p = &y;

with:

#define p (&y)

5-7

5 Approximations Used During Verification

Variable Cast as Void Pointer
The C language allows the use of statements that cast a variable as a void
pointer. However, Polyspace verification of these statements entails a loss
of precision.

Consider the following code:

1 typedef struct {

2 int x1;

3 } s1;

4

5 s1 object;

6

7 void g(void *t) {

8 int x;

9 s1 *p;

10

11 p = (s1 *)t;

12 x = p->x1; // x should be assigned value 5 but p->x1 is full-range

13 }

14

15 void main(void) {

16 s1 * p;

17

18 object.x1 = 5;

19 p = &object;

20 g((void *)p); // p cast as void pointer

21 }

On line 12, the variable x should be assigned the value 5. However, the
software treats p->x1 as full-range.

In some cases, you can avoid this loss of precision by running your verification
with the option -retype-pointer. For this example, if you specify
-retype-pointer, the software assigns the value 5 to x in the function g.

5-8

Limitations of Polyspace® Verification

Limitations of Polyspace Verification
Code verification has certain limitations. The Polyspace Limitations document
describes known limitations of the code verification process.

To view this document, open the following file:

DVD\Docs\polyspace_limitations.pdf

5-9

5 Approximations Used During Verification

5-10

6

Examples

6 Examples

Complete Examples

In this section...

“Simple C Example” on page 6-2

“Apache Example” on page 6-2

“cxref Example” on page 6-3

“T31 Example” on page 6-3

“Dishwasher1 Example” on page 6-3

“Satellite Example” on page 6-4

Simple C Example
polyspace-c \
-prog myCproject \
-O1 \
-I /home/user/includes \
-D SUN4 -D USE_FILES \

Apache Example
Here is a script for verifying the code for Apache (after formatting). The
source code is in C and the compilation is for an Oracle® Sun™ Microsystems
SPARC® processor.

Note The use of O0 to reduce verification time.

polyspace-c \ \
-target sparc \
-prog Apache \
-keep-all-files \
-allow-undef-variables \
-continue-with-red-error \
-O0 \
-D PST \
-D __GNUC_MINOR__=6 -D SOLARIS2=270 -D USE_EXPAT \

6-2

Complete Examples

-D NO_DL_NEEDED \
-I sources \
-I /usr/local/pst/include.sparc \
-I /usr/include \
-results-dir RESULTS

cxref Example
Here is another C launch command. The compilation is for Linux. Note the
escape characters, allowing quoted strings to be used as compiler defines.

polyspace-c \
-OS-target linux \
-prog cxref \
-O0 \
-I `pwd` \
-I sources \
-I <Polyspace_Install>/include/include.linux \
-D CXREF_CPP='\"/usr/local/gcc/bin/cpp\"' \
-D PAGE='\"A4\"' \
-results-dir RESULTS

T31 Example
Another simple C launcher. There are a couple of tasks and compilation is
for an m68k.

polyspace-c \
-target m68k \
-entry-points task_callback_main,task_tcp_main,cdtask_depm_main,

task_receiver \
-to pass1 \
-prog T31 \
-O0 \
-results-dir `pwd`/RESULTS_31 \
-keep-all-files

Dishwasher1 Example
Another C example. This one is for the c-167 and has tasks protected by
critical section.

polyspace-c \

6-3

6 Examples

-target c-167 \
-entry-points periodic,pst_main \
-D PST -D const= -D water= \
-from scratch \
-to pass4 \
-critical-section-begin "critical_enter:cs1" \
-critical-section-end "critical_exit:cs1" \
-prog dishwasher1 \
-I `pwd`/sources \
-O0 \
-keep-all-files \
-results-dir RESULTS

Satellite Example
A C example with tasks and critical sections.

polyspace-c
-target c-167 \
-entry-points ctask0,ctask1,ctask2,ctask3,interrupts \
-O2 \
-keep-all-files \
-from scratch \
-critical-section-begin "DisableInterrupts:sc1" \
-critical-section-end "EnableInterrupts:sc1" \
-ignore-constant-overflows \
-include `pwd`/sources/options.h \
-to pass4 \
-prog satellite \
-I `pwd`/sources \
-results-dir RESULTS

6-4

	toc
	Option Descriptions for C Code
	Polyspace Analysis Options Overview
	Machine Configuration
	Machine Configuration Overview
	Send to Polyspace Server
	Settings
	Tips
	Command-Line Information

	Add to results repository
	Settings
	Dependency
	Command-Line Information

	Number of processes for multiple CPU core systems
	Non-official options
	-extra-flags
	-c-extra-flags
	-cfe-extra-flags
	-il-extra-flags

	Target & Compiler
	Target & Compiler Overview
	Target operating system
	Target processor type
	Generic target options
	-little-endian
	-big-endian
	-default-sign-of-char [signed|unsigned]
	-char-is-16bits
	-short-is-8bits
	-int-is-32bits
	-long-long-is-64bits
	-double-is-64bits
	-pointer-is-32bits
	-align [8|16|32]

	Dialect
	Settings
	Tips
	Command-Line Information
	See Also

	Allow language extensions
	Sfr type support
	Division round down
	Enum type definition
	Signed right shift
	Preprocessor definitions
	Undefined preprocessor definitions
	Code from DOS or Windows file system
	Continue with compile error
	Command/script to apply to preprocessed files
	Include

	Coding Rules & Code Complexity Metrics
	Check MISRA C rules
	MISRA C rules configuration
	Check AC AGC rules
	MISRA AC AGC rules configuration
	Check custom rules
	Files and folders to ignore
	Effective boolean types
	Allowed pragmas
	Calculate code complexity metrics
	Settings
	Tips
	Command-Line Information

	Verification Mode
	Verify whole application
	Multitasking
	Entry points
	Critical section details
	Temporally exclusive tasks
	Verify module
	Main for Generated Code
	Main Generator Behavior for Polyspace Software
	Polyspace Client for C/C++ Main Generator
	Polyspace Server for C/C++ Main Generator

	Variables to initialize
	Command-Line Information

	Initialization functions (-functions-called-before-main)
	Functions to call
	Run unit by unit verification
	Unit by unit common source files
	Calibration variables
	Input variables
	Initialization functions (-functions-called-before-loop)
	Cyclic functions
	Termination functions
	Variable/function range setup
	Do not consider all global variables to be initialized
	NIV Example 1:
	NIV Example 2 — With Tasks:
	No automatic stubbing
	Functions to stub

	Verification Assumptions
	Respect types in fields
	Respect types in global variables
	Ignore float rounding
	Green absolute address checks
	Ignore overflowing computations on constants
	Allow negative operand for left shifts
	Detect overflows on
	Example 1
	Example 2
	Overflows computation mode
	Enable pointer arithmetic out of bounds of fields
	Pointer Arithmetic Within Structures
	Negative Pointer Offset
	Allows incomplete or partial allocation of structures
	Memory Allocation for Structures
	Permissive function pointer calls

	Precision
	Precision level
	Verification level
	Verification time limit
	Retype variables of pointer types
	Retype symbols of integer types
	Sensitivity context
	Improve precision of interprocedural analysis
	Specific Precision
	Optimize huge static initializers
	Reduce task complexity
	Inline
	Depth of analysis inside structures

	Post Verification
	Command/script to apply after the end of the code verification
	Automatic Orange Tester
	Number of automatic tests
	Maximum loop iterations
	Maximum test time

	Reporting
	Generate report
	Settings

	Report template name
	Settings
	Tip
	Command-Line Information

	Output format
	Settings
	Command-Line Information

	Batch Options
	-server
	-sources-list-file
	-v | -version
	-h[elp]
	-prog
	Settings
	Command-Line Information

	-date
	Settings
	Tip
	Command-Line Information

	-author
	Settings
	Command-Line Information

	-verif-version
	Settings
	Tip
	Command-Line Information

	-results-dir
	-sources
	-I
	-from
	-import-comments
	-tmp-dir-in-results-dir
	-less-range-information
	-no-pointer-information
	-keep-all-files
	Settings
	Tips
	Command-Line Information

	-known-NTC
	-asm-begin -asm-end
	-strict
	-permissive
	-Wall
	-report-output-name
	Settings
	Command-Line Information

	Deprecated Options
	-continue-with-red-error (Deprecated)
	-continue-with-existing-host (Deprecated)
	-allow-unsupported-linux (Deprecated)
	-quick (Deprecated)

	Option Descriptions for C++ Code
	Overview
	Machine Configuration
	Machine Configuration Overview
	Send to Polyspace Server
	Settings
	Tips
	Command-Line Information

	Add to results repository
	Settings
	Dependency
	Command-Line Information

	Number of processes for multiple CPU core systems
	Non-official options
	-cpp-extra-flags flag
	-il-extra-flags flag

	Target & Compiler
	Target operating system
	Target processor type
	Generic target options
	-little-endian
	-big-endian
	-default-sign-of-char [signed|unsigned]
	-char-is-16bits
	-short-is-8bits
	-int-is-32bits
	-long-long-is-64bits
	-double-is-64bits
	-pointer-is-32bits
	-align [8|16|32]

	Dialect
	Pack alignment value
	Import folder
	Ignore pragma pack directives
	Support managed extensions
	Enum type definition
	Management of scope of 'for loop' variable index
	Management of w_char_t
	Set wchar_t to unsigned long
	Set size_t to unsigned long
	Preprocessor definitions
	Undefined preprocessor definitions
	Code from DOS or Windows file system
	Continue with compile error
	Overcome link error
	Command/script to apply to preprocessed files
	Include

	Coding Rules & Code Complexity Metrics
	Check MISRA C++ rules
	MISRA C++ rules configuration
	Check JSF C++ rules
	JSF C++ rules configuration
	Check custom rules
	Files and folders to ignore
	Calculate code complexity metrics
	Settings
	Tips
	Command-Line Information

	Verification Mode
	Main entry point
	Entry points
	Critical section details
	Temporally exclusive tasks
	Verify module
	Class name
	Methods to call within the specified classes
	Analyze class contents only
	Skip member initialization check
	Functions to call
	Variables to initialize
	Initialization functions
	Run unit by unit verification
	Unit by unit common source files
	Variable/function range setup
	No automatic stubbing
	No STL stubs
	Functions to stub

	Verification Assumptions
	Respect types in fields
	Respect types in global variables
	Ignore float rounding
	Green absolute address checks
	Ignore overflowing computations on constants
	Allow negative operand for left shifts
	Detect overflows on
	Example 1
	Example 2
	Overflows computation mode

	Precision
	Tuning Precision and Scaling Parameters
	Precision versus Time of Verification
	Precision versus Code Size

	Precision level
	Verification level
	Verification time limit
	Sensitivity context
	Improve precision of interprocedural analysis
	Inline
	Depth of analysis inside structures

	Post Verification
	Command/script to apply after the end of the code

	Reporting
	Generate report
	Settings

	Report template name
	Settings
	Tip
	Command-Line Information

	Output format
	Settings
	Command-Line Information

	Batch Options
	-server
	-sources
	-sources-list-file
	-main-generator-files-to-ignore
	-v | -version
	-h[elp]
	-prog
	-date
	-author
	-verif-version
	-results-dir
	-I
	-from
	-import-comments
	-tmp-dir-in-results-dir
	-less-range-information
	-no-pointer-information
	-keep-all-files
	Settings
	Tips
	Command-Line Information

	-permissive
	-Wall
	-report-output-name
	Settings
	Command-Line Information

	Deprecated Options
	-continue-with-existing-host (Deprecated)
	-allow-unsupported-linux (Deprecated)
	-quick (Deprecated)
	Benefits
	Limitations

	Check Descriptions for C Code
	UNR – Unreachable Code
	OBAI – Out of Bounds Array Index
	ZDV – Division by Zero
	NIV (NIVL) – Non-Initialized Variable
	OVFL – Scalar and Float Overflow
	Scalar Overflow
	C Example
	Left Shift Overflow on Signed Variables

	Float Overflow
	C Example
	Overflow on the Biggest Float
	Float Underflow Versus Values Near Zero

	Constant Overflow

	IRV – Initialized Return Value
	SHF – Shift Operations
	Shift Amount in 0..31 (0..63): SHF
	Left Operand of Left Shift is Negative: SHF

	IDP – Illegal Dereferenced Pointer
	Illegal Pointer Access to Variable or Structure Field: IDP
	Pointer Within Bounds: IDP
	Understanding Addressing
	I Systematically Have an Orange Out of Bounds Access On My Hardw
	The NULL Pointer Case
	Comparing Address

	Understanding Pointers
	Pointers and Verification
	Address Alignment: the bitfield Example
	How Does malloc Work for Polyspace Verification?
	Data Mapping into a Structure€
	Mapping of a small structure into a bigger one
	Partially allocated pointer (-size-in-bytes)
	Pointer to a structure field
	I have a red when reading a field of one structure

	COR – Correctness Condition
	Array Conversion Must Not Extend Range: COR
	Function Pointer Does Not Point to a Valid Function: COR
	Pointer Does Not Point To Any Function
	Function Arguments Do Not Match Prototype Arguments
	Wrong Number of Arguments
	Wrong Return Type

	NIP – Non-Initialized Pointer
	ASRT – User Assertion
	NTC – Non-Termination of Call
	Non-Termination of Calls and Loops: Informative Checks
	Non Termination of a Call: NTC
	Arithmetic Expressions: NTC

	K_NTC – Known Non-Termination of Call
	NTL – Non-Termination of Loop
	Non Termination of Loop: NTL
	Tooltips for NTL Checks
	NTL Check Examples
	NTL Example 1:
	NTL Example 2:
	NTL Example 3:
	NTL Example 4:
	NTL Example 5:
	NTL Example 6:

	STD_LIB – Standard Library Function Call
	ABS_ADDR – Absolute Address
	IPT – Inspection Points
	POW (Deprecated)
	UNFL (Deprecated)
	UOVFL (Deprecated)

	Check Descriptions for C++ Code
	C++ Check Categories
	Acronyms Associated with Specific C++ Constructions
	Acronym Not Related to C++ Constructions (Also Used for C Code):

	UNR – Unreachable Code
	C++ Example
	Explanation

	OBAI – Out of Bounds Array Index
	C++ Example
	Explanation

	ZDV – Division by Zero
	C++ Example

	NIV (NIVL) – Non-Initialized Variable
	C++ Example
	Explanation

	OVFL – Scalar and Float Overflow
	Scalar Overflows
	C++ Example

	Float Overflows
	C++ Example
	Overflow on the Biggest Float
	Float Underflow Versus Values Near Zero

	Constant Overflow

	SHF – Shift Operations
	Shift Amount is Outside its Bounds: SHF
	C++ Example
	Explanation

	Left Operand of Left Shift is Negative: SHF
	C++ Example
	Explanation

	NNT – Pointer of function Not Null
	C++ Example
	Explanation

	CPP – C++ Specific Checks
	Positive Array Size: CPP
	C++ Example
	Explanation

	Incorrect typeid Argument: CPP
	C++ Example
	Explanation

	Incorrect dynamic_cast on Pointer: CPP
	C++ Example
	Explanation

	Incorrect dynamic_cast on Reference: CPP
	C++ Example
	Explanation

	FRV – Function Returns a Value
	C++ Example
	Explanation

	IDP – Illegal Dereferenced Pointer
	Pointer is Outside its Bounds: IDP
	C++ Example
	Explanation

	Understanding Addressing
	Hardware Registers
	NULL pointer
	Comparing addresses

	Understanding Pointers
	How does malloc work for Polyspace verification?
	Structure Handling — Array Conversions: COR
	Structure Handling — Mapping a Small Structure into a Bigger One

	COR – Correctness Condition
	Function Pointer Does Not Point to a Valid Function: COR
	C++ Example
	Explanation
	C++ Example
	Explanation
	C++ Example
	Explanation

	Scalar Overflow on Division (/) Operation: COR
	C++ Example
	Explanation

	NIP – Non-Initialized Pointer
	C++ Example
	Explanation

	EXC – Exception Handling
	Function throws: EXC
	C++ Example
	Explanation

	Call to Throws: EXC
	C++ Example
	Explanation

	Destructor or Delete Throws: EXC
	C++ Example
	Explanation

	Main, Tasks or C Library Function Throws: EXC
	C++ Example
	Explanation

	Exception Raised is Not Specified in the Throw List: EXC
	C++ Example
	Explanation

	Throw During Catch Parameter Construction: EXC
	C++ Example
	Explanation

	Continue Execution in __except: EXC
	C++ Example
	Explanation

	ASRT – User Assertion
	C++ Example
	Explanation

	OOP – Object Oriented Programming
	Invalid Pointer to Member: OOP
	C++ Example
	Explanation

	Call of Pure Virtual Function: OOP
	C++ Example
	Explanation

	Incorrect Type for this-pointer: OOP
	C++ Example
	Explanation

	NTC – Non-Termination of Call
	Non Termination of Calls and Loops: Informative Checks
	Non Termination of Call: NTC
	C++ Example
	Explanation

	NTL – Non Termination of Loop
	Non Termination of Loop: NTL
	C++ Example
	Explanation

	Tooltips for NTL Checks

	ABS_ADDR – Absolute Address
	INF – Potential Call
	C++ Example
	Explanation

	POW (Deprecated)
	UNFL (Deprecated)
	UOVFL (Deprecated)

	Approximations Used During Verification
	Why Polyspace Verification Uses Approximations
	What is Static Verification
	Exhaustiveness

	Approximations Made by Polyspace Verification
	Volatile Variables
	Structures with Volatile Fields
	Absolute Addresses
	Pointer Comparison
	Shared Variables
	Trigonometric Functions
	Unions
	Constant Pointer
	Variable Cast as Void Pointer

	Limitations of Polyspace Verification

	Examples
	Complete Examples
	Simple C Example
	Apache Example
	cxref Example
	T31 Example
	Dishwasher1 Example
	Satellite Example

